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Abstract —Wireless signaling has traditionally been used for
localization of a handset device.  However, multipath
propagation distortion coupled with the modest bandwidth of
the wireless signal results in insufficient spatial resolution for
general applications. 3D computer vision (CV) technology
has been shown to overcome these deficiencies but the
apparatus and computation required is not commensurate
with the limited capabilities of the handset device. In this
paper a processing algorithm is proposed that combines CV
and wireless observables. The CV processing consists of a
novel 6DOF ego-motion algorithm that is partitioned into two
concatenated 3DOF estimations.  Wireless pseudo-range
measurements are interjected for drift correction using
particle filter processing. The method has been verified
experimentally to provide negligible deviations of the ego-
motion trajectory estimation quantified as a standard
deviation of several millimeters per meter of trajectory length.
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I. INTRODUCTION

Currently, there is significant interest in extending location
based services as provided by a handheld smartphone device
to indoor locations such as airports, hospitals, malls, and
campuses. Maps of such indoor facilities are being generated
which provides impetus for the development of indoor
location technology that is of sufficient utility, accuracy and
reliability for demanding smartphone applications. The
traditional reliance on GPS based signals cannot be extended
to such indoor applications as the signals are too weak as well
as being subject to large ranging errors due to multipath
distortions. Locally generated WiFi and 4G LTE wireless
signals of ample signal power and larger bandwidth partially
ameliorate these issues. However, the severe indoor multipath
conditions still limit the accuracy of wireless location systems
to several 10’s of meters [3]. Significantly improved accuracy
is required to facilitate location based services for a mobile
handset device (HD).

Computer vision (CV) based ego-motion offers a highly
accurate sensory input which when combined with the
wireless signaling can provide a compelling technological
solution that is compatible with the stringent cost, size and
power consumption constraints imposed by the HD [10, 11].
In this paper, an ego-motion CV system is presented which is
robust, relatively low complexity and provides accurate
location estimates. Being based on a particle filter (PF)
Bayesian filter, it provides a convenient means of fusing CV
and wireless location observables with an outcome that is a
Bayesian belief map as to the location of the HD. The first

and second order moments of the Bayesian belief map or
posterior probability density function (PDF) are readily
calculated resulting in the optimum unbiased minimum mean
square estimate (MMSE) of the handset location [1].
Furthermore the PF provides for means of incorporating the
statistical modeling of the multipath, unsynchronized wireless
signal transmitters, uncertainty in the location of the wireless
signal transmitters, clock instability of the HD oscillator and
so forth. Figure 1 illustrates the overall location problem with
the HD indicated with two processing components, a CV
camera sensor that is directed primarily downward such that a
significant portion of the field of view (FOV) intercepts the
floor or ground surface and a wireless receiver for intercepting
relevant wireless signals that are of use in the location

estimation. {xa,ya,za} is the reference coordinate system
that the HD ego-motion is referenced to. The objective of the
CV processing is the estimation of the trajectory of the HD as
projected onto the 2D ground surface.
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Figure 1 Ego-motion of handheld device relative to floor
ground surface

The overall structure of the processing is given as in Figure
2 which is based on the PF tracking a vector of state variables
given in Table 1.

Variable | Description

X Location of handset along X,

y Location of handset along Y,

a, Clockwise rotation of handset about Z
by..b, Multipath bias of wireless signals

Table 1 PF state variables



Of these variables, X and Y are the only variables relevant to

the location of the HD. @, is necessary to carry as a state
variable because only differential pose increments are
available from the CV processing. b,...b, are the individual

delay biases of the L wireless signals. By tracking the bias,
the effect of the multipath induced range errors can be
significantly reduced [3]. The overall processing as outlined
in Figure 2 is based on a PF with three main steps that are
executed recursively. The first step is the predictive update
step which is based on the inputs from the 6DOF CV sensor
output which are differential observables for a time increment

of At as:
AX - increment along X,

Ay -incrementalong Y,

Aa, - increment in clockwise pose angle about Z

The second step of the PF is to include the wireless
measurements as observables that are used to modify the
weights of the particles used in the PF. The third step is the
optional resampling of the particles. The resampling can be
performed every time increment resulting in the sequential
importance sampling (SIR) implementation of the PF. More
computationally efficient PF methods are possible by updating
the weight of each particle and only resampling as necessary
to avoid particle degeneracy [1, 2].
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Figure 2 Main PF processing steps coupling in the 6DOF CV
inputs and the wireless range measurement

The main focus of the paper will be the 6DOF CV
processing block indicated in Figure 2 which is comprised to
two 3DOF processing blocks. The left 3DOF block generates

differentials {AaZ,AX,Ay} that result in the predictive
updates of {az,x, y} in the PF. The right 3DOF block

computes estimates of the HD tilt angles of{ax,ay} and the

height of the HD above the ground surface denoted by h. The
tilt angles are defined as

a, - counter-clockwise tilt about the X, axis

a, - counter-clockwise tilt about the Yy, axis

Note that as the HD is freely held, these tilt angles will
typically vary significantly and must be estimated in order to

accurately estimate the {Aaz , AX, Ay} differentials relative to

the ground reference coordinates. A notable novelty of the
proposed algorithm is this partition of the 6DOF problem into

the two 3DOF estimations of variable sets {Ax,Ay,Aaz}

and {ax,ay,h}. While the focus of the paper is the CV

sensor, some further background of the PF is provided in
section 2. Section 3 then provides a description of the CV
system with the accuracy characterization given in section 4.
Section 5 summarizes the main conclusions of the paper.

II. PARTICLE FILTER

The outcome of the PF is the posterior probability density
function (PDF) that accounts for all of the incremental motion
of the HD as determined from the CV output as well as the
measurements from the wireless sources. The mean of the
computed posterior PDF is equivalent to the minimum mean
square error (MMSE) of the tracked state variables associated
with the HD motion conditioned on of the measurements since
the beginning of the trajectory [1]. The PF uses a set of M
particles that are distributed across the multidimensional space
of  the state variables consisting of the

variables {X, y,a,, bl...bL} . The
specifically the m™ particle is given as

where m denotes the particle index and t the discrete time
index which is conveniently tied to the CV frame index. The

initial set of particles x([;“], represent what is known of the

time sequence of

initial state distribution. That is xgm] approximates the prior

belief of the state distribution. The PF assumes that the state
variables are jointly first order Markov such that the recursive
relation of the likelihood of the state variables can be
expressed iteratively as in [2]

bel (%) = 7P (2 1% ) P(% 1%, )bl (1) M
In this relation, X,, represents the state variables from the

initial time frame of 0 to the current time of t, bel (X, ) is
the posterior PDF of the state variables for all of the time
intervals up to the current time, U, is the update of the state
variable vector at the current time step, Z, represent the set of
wireless observables available at the current time step,
p(XI|XI_1,ut) is the PDF of the current state vector
conditioned on the state of the previous time step and the
current update, p(Zt | Xt) is the PDF of the measurement

conditioned on the current state and finally 77 is a normalizing

constant. The recursive steps outlined in Figure 2 are related
to (1) as follows:



the PDF
These come from the CV observables

1. Draw random particles consistent with

of P(X | %y).
which provides the update denoted by U, that consists of the

CV differentials of {Ax,Ay,Aaz} . The PDF is assumed to

be jointly normal based on the covariance of the CV
differentials. The mean is given as
{ X1 X+AX, XY+ AY, X_;.8Z + Aaz}

where the “.” implies the component of the state vector.
2. Generate the particle weights of W™ = p(zt | (™ ) which

[m]

are based on the set of wireless range measurements of z;,-.

p(Zt | Xt) is assumed to be Gaussian with a mean of

1
2

2 = (w6 wy ) (e
where the location of the i wireless transmitter is assumed to
be at {Wx,,Wy,,Wz;} in the ground reference frame, b, is the
height of the HD (a CV generated estimate) at the t" interval
and Xt[m].bi represents the delay bias associated with the i
link. z,is
commensurate with the current signal strength of the wireless
signals and assumed deviation of the multipath delay spread.
3. Particle resampling is done based on the weights of Wt[m] as
per the standard SIR algorithm.

wireless transmitter The covariance of

system Description

{Xa,yayza} Reference to ground manifold — right hand

system
{xb,yb,zb} Translated relative to {Xa,ya,za} on ground

centered directly below the camera center.
That is Z, passes through camera center —
right hand system

Rotated relative to {Xb, Yo Zb} - right hand
system

{Xc' yc’Zc}

Azimuth rotated camera centric system with
origin at the camera center — left hand system

with Z, in the direction of Z_

{X4:¥g: 24}

Camera centric coordinate system referenced
to IR camera with origin at camera center and
with two tilt angles relative to the

{Xd,yd,zd} coordinate system — left hand

{Xe’ yelze}

system

{X Y., Z } Camera centric coordinate system referenced
fr 71771}l to RGB camera with origin at camera center

{Xe’ yefze}

coordinate system — left hand system

translated relative to the

Table 2 Defined coordinate systems

I1l. COMPUTER VISION OBSERVABLES

Figure 1 partially introduced the coordinate systems that are
required to represent the CV sensor unit relative to the ground
reference coordinates. Additional coordinate systems required
to develop the required transformations are given in Table 2.

The CV sensor is based on the Microsoft Kinect which
consists of a low power laser projector with a diffraction
grating that generates approximately 30,000 points over the
FOV with high correspondence accuracy with the associated
infrared (IR) camera. In essence, the Kinect paints a
scattering point texture on the ground manifold which can be
estimated in 3D based on the established correspondence with
the IR camera [12]. The scattering point cloud as seen from
the IR camera will be registered by the disparity map output of

the Kinect in the {Xe, Yer Ze} coordinate system. In addition

to the IR depth mapping architecture, the Kinect also contains
a standard red-green-blue (RGB) camera. The experimental
HD prototype developed for the testing of the algorithms is
shown in Figure 3.

r Infrared Camera
| Infrared Projector \\/ RF Output

RGB Camera

Wireless Antenna

Figure 3 Experimental prototype of the HD showing the
camera sensor and wireless antenna

The CV processing relies on two simultaneously analyzed
sets of feature points. The active scattering points as
generated by the projector laser is one set which provides the
3DOF observables necessary for tilt and height compensation
of the HD. The other set of feature points are those that reside
on the ground plane itself. They are passive and detected by
the RGB camera. These feature points are used to update the
state variables based on the estimation of the frame-by-frame
differential motion. The details of these algorithms will now
be discussed.

I11.1 3DOF Tilt and Height Compensation
The disparity map outputted from the internal Kinect depth
generator contains information describing the depth for each
scattering point. Using the calibrated IR intrinsic parameters
[7], the disparity map may be re-projected into 3D space to

form a scattering point cloud relative to{Xe, Ve Ze}. The



transformation between the {Xd ' Yy Zd} coordinates and the

{Xe, ye,Ze}frame which is based on the tilt angles of the
HD, {aX, ay} is given by

X, cos(ay) 0 sin(ay) 1 0 0 X,
Y, |= 0 1 0 0 cos(a,) -sin(a,)|| Y
g _ 0 s )
-] |-sin(a,) 0 cos(a,)| 0 sin(a) cos(a,) ||z
Xd
= Red yd
Zd

which relates a vector in the {Xd ' Yqo Zd} coordinates to the
same vector referenced to the {Xe, Yer Ze} coordinates and

defines the rotation matrix R_,. The tilt angles are illustrated

in Figure 4 with the order assumed as a, followed by a,.

Voo

Z,

Figure 4 Mapping between the coordinate systems
{Xd v Ya1 24 } and {Xe, Yo Ze} with positive tilt rotation
angles of a, and a,

Let that the points (Xl, Yir 21) to (XN Yo ZN) represent the
projected scattering points of the ground plane surface such
that each point satisfies the plane  equation
Ax+By+Cz+D=0. 3
The constant coefficients are determined from the resulting
over-determined set of equations as

X Yroz 1Al |0

X z, 1| B 0

R Il P 4
: C :

D

The solution of this homogeneous relation is determined from
the singular value decomposition (SVD) of the N by 4 matrix
Q defined as

Xl yl Zl 1

X Y, 7, 1
Q= . . . . (®)

X Yoy 1

If the N scattering points perfectly coincide with the ground
plane then there would be a single singular value of 0 that
corresponds to the solution of the plane coefficients. That is
the corresponding right singular vector of Q with the zero
singular value gives the [A,B,C,D] coefficients. It is
convenient to normalize these coefficients such that the
coordinates of the plane normal vector of

n.=[A B CJ (6)
is such that ||ne|| =1. The appropriately scaled value of D

gives the negative offset of the plane from the origin along the
normal vector. Also there is an ambiguity of the direction of
the normal vector which is arbitrarily set to be such that C is
positive. Hence the normal will nominally be in a direction
that is pointed away from the camera. By definition, the

ground surface normal in the {xd,yd,zd} system

is[O 0 —1]T. Therefore we have

A 0
B|=R,| 0 )
C -1

From this we can solve for the tilt angles using
A=-sin(a,)cos(a,)
B =sin(a,) ®)

C =—cos(a, )cos(a,)

The determination of the plane normal from the projected
points can be seen in Figure 5 where the left side of the figure
represents the observation of the projected scattering points on
the ground surface and the right side displays the 3D point
structure with the green vector representing the estimated
plane normal. The final output of the 3DOF tilt and height

compensation algorithm is a vector [ax a, h]which will

be used directly by the 3DOF differential update. Figure 6
displays the set of normals calculated from a cluster of
sampled 3D scattering points where the green lines represent
the computed plane normals. For this figure, rectangles cut
out of paper where placed on the floor surface resulting in
high quality feature points at the corners of the paper
rectangles. The normals correspond to the normal of the plane
in the neighborhood of the feature points.



Estimated Planar Normal From 30 Pairt Cloud

meters

Figure 5 Determination of plane normal from projected points

Due to small residual errors in the correspondence between
the laser projector and IR camera of the Kinect, lens
distortion, as well as the possibility that the ground plane is
not perfectly planar, the smallest singular value will not be
exactly zero but rather a small positive quantity. If the
smallest singular value is too large, this implies that the
ground plane is not sufficiently planar for the accurate
determination of the ego-motion trajectory. However, there
will generally always be (unless the plane surface is not flat or
the data is excessively noisy) a singular value that is much
smaller than the other three values. The residual of this
singular value relative to the three other larger singular values
provides an indication of the quality of the scattering point
data. The tilt angles determined for the IR camera are directly
applicable for the RGB camera also (provided that the IR and
RGB cameras are suitably calibrated).

Figure 6 Computed planar normal shown by green vectors

I11.11 3DOF Differential Update
As the image frames are sampled at a rate of 30 frames per
second from the RGB camera, corner based feature points (fp)
representing high contrast texture regions of the ground
surface are detected and tracked through consecutive frames
using pyramidal Lucas-Kanade optical flow as seen in Figure
7.14,5,6,8,9]

Figure 7 Trajectories of RGB fp’s shown by red arcs with the
original fp indicated by green dots

These fp’s are static relative to the {Xa, Yas Za} frame.
Furthermore they are assumed to be coincident with the
ground plane such that the Z, component of each feature point
is assumed to be 0. Then we have a set of K fp’s denoted as

{fxiyk, fyiyk}. Here the index i denotes the image frame, k

denotes the feature index and {X, y} denotes the estimate of
the location of the fp on the ground surface consistent with the
{XC, Yo ZC} frame (rotated and translated relative to

{Xa,ya,za}). These feature points are paired with
corresponding feature points of the previous frame given
as{ fxif, fyi;(l} . If the correspondences cannot be found then

the feature point is not used for tracking but stored for the next
frame. A credible feature point track must emerge before it is
considered eligible for use in estimating the ego-motion. In
this way many of the sporadic feature points, that would
distort the ego-motion estimate, can be pruned away. The
ground plane equation derived from the SVD is translated to
the camera center of the RGB camera. It is assumed that the

RGB camera center is offset along the X, axis by a distance of

D, from the camera center of the IR camera. The

coordinates of the RGB camera are denoted as {Xf Y Zs }

with the ground plane relation given as
AX; +By; +Cz, +(D+AD,,)=0
As the RGB camera is primary in terms of the projection of

the ground feature points the geometry is modified slightly
with the RGB camera now at the origin of the

{Xf v YiiZs }frame with the modified plane equation. Next,

the projection of the fp’s in the image plane onto the ground
plane is calculated. The first step is to determine where the fp
resides on the ground plane. This is based on a parametric
vector. Assume that the fp is in the image plane of the RGB

camera that is relative to the {Xe, ye,Ze}frame being co-



planar with the (0,0,l) plane with a z, value for f. The fp

is represented in terms of coordinates i.x and i.y. The position
vector passing through the fp on the image plane to the actual

fp on ground surface is [i.x, iy, f]T

of the plane is then Ati.X+Bti.y+Ctf +D=0. After

determining t that satisfies this equation, the corresponding
points on the ground plane may be computed. The result is the

position vector in the {Xe,ye,ze} frame which is then

. The interception point

transformed into the {XC, Yo ZC} frame as seen in Figure 8.
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Ax+By+Cz+D=0

Figure 8 Projection of fp’s onto tilted ground plane

The 3DOF differential update will be determined based on the
frame-by-frame differential motion of the projected feature

points. Define T, as the translation vector between the
{X,,¥.,2,} and {Xo: ¥y 2, } coordinate systems. R, is

the rotation matrix between {Xb, Yo Zb} and {Xc, Yo ZC}
coordinate systems given as

cos(a,) sin(a,) O
Ry, =|—sin(a,) cos(a,) 0 ©
0 0 1

where @, is the positive rotation about the Z, axis. The
affine translation between the {Xc, Yo ZC} and {Xd ' Yo Zd}
coordinate systems is

X
x,] [t 0 0 0]
y,|=[0 1 0 0 Ve

yA
z,| [0 0 -1 h|l"

1

(10)

The motion of the k™ feature point from the t-1" to the t"
frame is described by the affine transformation in the

{XC Ve ZC} frame as follows

fei _ cos(Aa,,) sin(Aa, ) -Ax :x:ki (1)
fy | |—sin(Aa,, ) cos(Aa, ) -y, ik

where Aa,  is defined as the incremental CCW rotation of
the camera relative to the ground reference frame. That is the

incremental azimuthal rotation of {Xc,yc,zc} relative to

{Xb, Yo Zb} . This equation can be reorganized into the least
squares format for the k™ fp as

| cos(Aa,, )
fei _ fe  fix —1 0 |lsin(Aa,) 12
f fro —foe 0 -1 AX,
Ay,

This is assembled for all of the K fp’s and the over-determined
set of relations solved for the parameter vector

of[cos(Aau) sin(Aa,,) Ax, Ayt]T.

The summary of the steps of the overall procedure for both the
tilt/height compensation and the differential update is given
as:

1. The IR camera determines the corresponding set of
scattering points on the ground manifold.

2. The SVD is used to determine the right singular vector
giving the ground plane coefficients of {A,B,C,D} relative to

the{Xe, Yer Ze} coordinate system with the IR camera at the
origin.

3. The D coefficient is modified as D — D+ AD_,,
determines the ground plane with the RGB camera at the

which

origin in the {Xf ' Yio Zf} frame.
4. The set of fp’s are determined as angles in the FOV of the
RGB camera resulting in [i.X,i.y, f]T for each fp. Here f is

a suitable scaling factor such that [I.X, Ly, f ] is a directional

vector in the {Xe, Ve Ze} frame.

5. Find the plane intercept point for each fp by solving
Ati.x+Bti.y+Ctf + D=0 fort.

6. Map the vector of [ti.x,ti.y, tf ]T from the {X,,Y,,Z,}

frame to the {XC, Yer C} frame.
Proceed with computing the

{Xc,yc, c} frame.

8. Integrate the differential parameter vector

[c ) sin(Aa,;) Ax, Ayi] to update the state

differentials in the



variables and pass these back to the PF as an update for the
frame.

IV. SYSTEM CHARACTERIZATION

A method of determining the accuracy of the HD trajectory
estimate is to compute the residuals of the feature points back
projected onto the reference ground plane. That is the state
vector was determined for each update point of the trajectory.
These variables defined the transformations such that the
observed feature points could be back projected onto the
ground plane. Deviations along the axis directions could then
be calculated. Note that this procedure does not require a
reference trajectory. Experiments were performed based on
this procedure with the results given in Table 3 for static and
dynamic motion. Indicated is the standard deviation (STD) of
the parameters when the camera was held stationary for a
period of 10,000 frames. The angular measurements are given
in radians and the positional measurements are given in
centimeters.

a a a X y h

X y z

STD | 88x10° | 33x10° | 1.7x107 | 2.6x10" | 29x107 | 0.1x107

Table 3 6DOF state variable standard deviation (units are
radians and centimeters)

An example scatter plot of the back projected feature points is
shown in Figure 9. The standard deviation of the back-

projected feature points was 1.8x10°'centimeters and
7.1x1072 centimeters for the x and y axes respectively with
the dashed line ellipse indicating the deviation contour.

Standard Deviation of Back-Projected FPs
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Figure 9 Back-Projected Feature Points

V. CONCLUSIONS

This paper provides a description of a novel CV algorithm
that is used to implement an accurate indoor location system
for a HD. This was based on a 6DOF trajectory tracking

system that accurately accounted for the orientation and height
of the HD. Calculations of residuals based on back projected
feature points onto the reference ground plane indicated that
the trajectory estimate is very accurate with a standard
deviation on the order of several millimeters per meter of
trajectory length. Combining the CV update estimates with
the wireless observables in a PF results in an implementable
indoor location technology applicable for HD’s that can be
arbitrarily and randomly oriented.
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