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Abstract —Wireless signaling has traditionally been used for 
localization of a handset device.  However, multipath 
propagation distortion coupled with the modest bandwidth of 
the wireless signal results in insufficient spatial resolution for 
general applications.  3D computer vision (CV) technology 
has been shown to overcome these deficiencies but the 
apparatus and computation required is not commensurate 
with the limited capabilities of the handset device.  In this 
paper a processing algorithm is proposed that combines CV 
and wireless observables.  The CV processing consists of a 
novel 6DOF ego-motion algorithm that is partitioned into two 
concatenated 3DOF estimations.  Wireless pseudo-range 
measurements are interjected for drift correction using 
particle filter processing.  The method has been verified 
experimentally to provide negligible deviations of the ego-
motion trajectory estimation quantified as a standard 
deviation of several millimeters per meter of trajectory length.  
 
Keywords: 6DOF, ego-motion, wireless location, particle 
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I. INTRODUCTION 
Currently, there is significant interest in extending location 

based services as provided by a handheld smartphone device 
to indoor locations such as airports, hospitals, malls, and 
campuses.  Maps of such indoor facilities are being generated 
which provides impetus for the development of indoor 
location technology that is of sufficient utility, accuracy and 
reliability for demanding smartphone applications.  The 
traditional reliance on GPS based signals cannot be extended 
to such indoor applications as the signals are too weak as well 
as being subject to large ranging errors due to multipath 
distortions.  Locally generated WiFi and 4G LTE wireless 
signals of ample signal power and larger bandwidth partially 
ameliorate these issues.  However, the severe indoor multipath 
conditions still limit the accuracy of wireless location systems 
to several 10’s of meters [3].  Significantly improved accuracy 
is required to facilitate location based services for a mobile 
handset device (HD).  

Computer vision (CV) based ego-motion offers a highly 
accurate sensory input which when combined with the 
wireless signaling can provide a compelling technological 
solution that is compatible with the stringent cost, size and 
power consumption constraints imposed by the HD [10, 11].    
In this paper, an ego-motion CV system is presented which is 
robust, relatively low complexity and provides accurate 
location estimates.  Being based on a particle filter (PF) 
Bayesian filter, it provides a convenient means of fusing CV 
and wireless location observables with an outcome that is a 
Bayesian belief map as to the location of the HD.  The first 

and second order moments of the Bayesian belief map or 
posterior probability density function (PDF) are readily 
calculated resulting in the optimum unbiased minimum mean 
square estimate (MMSE) of the handset location [1]. 
Furthermore the PF provides for means of incorporating the 
statistical modeling of the multipath, unsynchronized wireless 
signal transmitters, uncertainty in the location of the wireless 
signal transmitters, clock instability of the HD oscillator and 
so forth.  Figure 1 illustrates the overall location problem with 
the HD indicated with two processing components, a CV 
camera sensor that is directed primarily downward such that a 
significant portion of the field of view (FOV) intercepts the 
floor or ground surface and a wireless receiver for intercepting 
relevant wireless signals that are of use in the location 
estimation.  { }a a ax , y , z  

is the reference coordinate system 
that the HD ego-motion is referenced to.  The objective of the 
CV processing is the estimation of the trajectory of the HD as 
projected onto the 2D ground surface. 

 
 

Figure 1 Ego-motion of handheld device relative to floor 
ground surface 

The overall structure of the processing is given as in Figure 
2 which is based on the PF tracking a vector of state variables 
given in Table 1. 
 

Variable  Description 

x  Location of handset along ax  

y  Location of handset along ay  

za  Clockwise rotation of handset about az  

1... Lb b  Multipath bias of wireless signals 

Table 1 PF state variables 



 

 
Of these variables, x  and y  are the only variables relevant to 

the location of the HD.  za  is necessary to carry as a state 
variable because only differential pose increments are 
available from the CV processing.  1... Lb b  are the individual 
delay biases of the L wireless signals.  By tracking the bias, 
the effect of the multipath induced range errors can be 
significantly reduced [3].  The overall processing as outlined 
in Figure 2 is based on a PF with three main steps that are 
executed recursively.  The first step is the predictive update 
step which is based on the inputs from the 6DOF CV sensor 
output which are differential observables for a time increment 
of t∆  as: 

x∆  - increment along ax  

y∆  - increment along ay  

za∆ - increment in clockwise pose angle about az  
The second step of the PF is to include the wireless 
measurements as observables that are used to modify the 
weights of the particles used in the PF.  The third step is the 
optional resampling of the particles.  The resampling can be 
performed every time increment resulting in the sequential 
importance sampling (SIR) implementation of the PF.  More 
computationally efficient PF methods are possible by updating 
the weight of each particle and only resampling as necessary 
to avoid particle degeneracy [1, 2]. 

 
Figure 2 Main PF processing steps coupling in the 6DOF CV 

inputs and the wireless range measurement 
 

The main focus of the paper will be the 6DOF CV 
processing block indicated in Figure 2 which is comprised to 
two 3DOF processing blocks.  The left 3DOF block generates 
differentials  { }, ,za x y∆ ∆ ∆  that result in the predictive 

updates of { }, ,za x y  in the PF.  The right 3DOF block 

computes estimates of the HD tilt angles of{ },x ya a  and the 

height of the HD above the ground surface denoted by h.  The 
tilt angles are defined as  

xa  - counter-clockwise tilt about the dx  axis 

ya  - counter-clockwise tilt about the dy  axis 

Note that as the HD is freely held, these tilt angles will 
typically vary significantly and must be estimated in order to 
accurately estimate the { }, ,za x y∆ ∆ ∆ differentials relative to 
the ground reference coordinates.  A notable novelty of the 
proposed algorithm is this partition of the 6DOF problem into 
the two 3DOF estimations of variable sets  { }, ,x y az∆ ∆ ∆

 
and { }, ,x ya a h .  While the focus of the paper is the CV 

sensor, some further background of the PF is provided in 
section 2.  Section 3 then provides a description of the CV 
system with the accuracy characterization given in section 4.  
Section 5 summarizes the main conclusions of the paper.  

II. PARTICLE FILTER 
The outcome of the PF is the posterior probability density 

function (PDF)  that accounts for all of the incremental motion 
of the HD as determined from the CV output as well as the 
measurements from the wireless sources.  The mean of the 
computed posterior PDF is equivalent to the minimum mean 
square error (MMSE) of the tracked state variables associated 
with the HD motion conditioned on of the measurements since 
the beginning of the trajectory [1].  The PF uses a set of M 
particles that are distributed across the multidimensional space 
of the state variables consisting of the 
variables{ }1, , , ...z Lx y a b b . The time sequence of 
specifically the mth particle is given as 

[ ] [ ] [ ] [ ]
0: 0 1, ,...,m m m m

t tx x x x=  
where m denotes the particle index and t the discrete time 
index which is conveniently tied to the CV frame index.  The 
initial set of particles [ ]

0
mx , represent what is known of the 

initial state distribution.  That is [ ]
0
mx  approximates the prior 

belief of the state distribution.  The PF assumes that the state 
variables are jointly first order Markov such that the recursive 
relation of the likelihood of the state variables can be 
expressed iteratively as in [2] 

( ) ( ) ( ) ( )0: 1 0: 1| | ,t t t t t t tbel x p z x p x x u bel xη − −=
         

(1)  

In this relation, 0:tx  represents the state variables from the 

initial time frame of 0 to the current time of t, ( )0:tbel x  is 
the posterior PDF of the state variables for all of the time 
intervals up to the current time, tu is the update of the state 

variable vector at the current time step, tz represent the set of 
wireless observables available at the current time step, 

( )1| ,t t tp x x u−  is the PDF of the current state vector 
conditioned on the state of the previous time step and the 
current update, ( )|t tp z x  is the PDF of the measurement 
conditioned on the current state and finally η  is a normalizing 
constant.  The recursive steps outlined in Figure 2 are related 
to (1) as follows: 



 

1. Draw random particles consistent with the PDF 
of ( )1| ,t t tp x x u− .  These come from the CV observables 

which provides the update denoted by tu  that consists of the 

CV differentials of { }, ,x y az∆ ∆ ∆ .  The PDF is assumed to 
be jointly normal based on the covariance of the CV 
differentials.  The mean is given as 

{ }1 1 1. , . , .t t tx x x x y y x az az− − −+ ∆ + ∆ + ∆  
where the “.” implies the component of the state vector.   
2. Generate the particle weights of ( )[ ] [ ]|m m

t t tw p z x= which 

are based on the set of wireless range measurements of [ ]
,
m

i tz .  

( )|t tp z x  is assumed to be Gaussian with a mean of  

[ ] [ ]( ) [ ]( ) ( )( ) [ ]
1

2 2 22
, . . .m m m m

i t t i t i t i t izo x x Wx x y Wy h Wz x b= − + − + − +  

where the location of the ith wireless transmitter is assumed to 
be at { }, ,i i iWx Wy Wz  in the ground reference frame,  th  is the 
height of the HD (a CV generated estimate) at the tth interval 

and [ ].m
t ix b represents the delay bias associated with the ith 

wireless transmitter link.   The covariance of tz is 
commensurate with the current signal strength of the wireless 
signals and assumed deviation of the multipath delay spread.   
3. Particle resampling is done based on the weights of [ ]m

tw  as 
per the standard SIR algorithm.   
system Description 
{ }, ,a a ax y z  Reference to ground manifold – right hand 

system 

{ }, ,b b bx y z
 

Translated relative to { }, ,a a ax y z  on ground 
centered directly below the camera center.  
That is bz passes through camera center – 
right hand system 

{ }, ,c c cx y z
 

Rotated relative to { }, ,b b bx y z  - right hand 
system 

{ }, ,d d dx y z
 

Azimuth rotated camera centric system  with 
origin at the camera center – left hand system 
with dz  in the direction of cz  

{ }, ,e e ex y z
 

Camera centric coordinate system referenced 
to IR camera with origin at camera center and 
with two tilt angles relative to the 

{ }, ,d d dx y z  coordinate system – left hand 
system 

{ }, ,f f fx y z
 

Camera centric coordinate system referenced 
to RGB camera with origin at camera center 
translated relative to the { }, ,e e ex y z  
coordinate system – left hand system 

Table 2 Defined coordinate systems 

III. COMPUTER VISION OBSERVABLES 
Figure 1 partially introduced the coordinate systems that are 

required to represent the CV sensor unit relative to the ground 
reference coordinates.  Additional coordinate systems required 
to develop the required transformations are given in Table 2. 

The CV sensor is based on the Microsoft Kinect which 
consists of a low power laser projector with a diffraction 
grating that generates approximately 30,000 points over the 
FOV with high correspondence accuracy with the associated 
infrared (IR) camera.  In essence, the Kinect paints a 
scattering point texture on the ground manifold which can be 
estimated in 3D based on the established correspondence with 
the IR camera [12].  The scattering point cloud as seen from 
the IR camera will be registered by the disparity map output of 
the Kinect in the { }, ,e e ex y z  coordinate system.  In addition 
to the IR depth mapping architecture, the Kinect also contains 
a standard red-green-blue (RGB) camera.  The experimental 
HD prototype developed for the testing of the algorithms is 
shown in Figure 3.  
 

 
Figure 3 Experimental prototype of the HD showing the 

camera sensor and wireless antenna 
 
The CV processing relies on two simultaneously analyzed 

sets of feature points.  The active scattering points as 
generated by the projector laser is one set which provides the 
3DOF observables necessary for tilt and height compensation 
of the HD.  The other set of feature points are those that reside 
on the ground plane itself.  They are passive and detected by 
the RGB camera.  These feature points are used to update the 
state variables based on the estimation of the frame-by-frame 
differential motion.  The details of these algorithms will now 
be discussed. 
 

III.I 3DOF Tilt and Height Compensation 
The disparity map outputted from the internal Kinect depth 

generator contains information describing the depth for each 
scattering point.  Using the calibrated IR intrinsic parameters 
[7], the disparity map may be re-projected into 3D space to 
form a scattering point cloud relative to{ }, ,e e ex y z .  The 



 

transformation between the { }, ,d d dx y z  coordinates and the 

{ }, ,e e ex y z frame which is based on the tilt angles of the 

HD,{ },x ya a  is given by 

( ) ( )

( ) ( )
( ) ( )
( ) ( )

cos 0 sin 1 0 0
0 1 0 0 cos sin

0 sin cossin 0 cos

y ye d

e x x d

e x x dy y

d

d

d

a ax x
y a a y
z a a za a

x
y
z

            = −            −      
 
 =  
  

edR

    (2)

 

which relates a vector in the { }, ,d d dx y z  coordinates to the 

same vector referenced to the { }, ,e e ex y z  coordinates and 

defines the rotation matrix edR .  The tilt angles are illustrated 

in Figure 4 with the order assumed as xa followed by ya .  

 
Figure 4 Mapping between the coordinate systems  

{ }, ,d d dx y z  and { }, ,e e ex y z with positive tilt rotation 
angles of ax and ay 

 
Let that the points ( )1 1 1, ,x y z  to ( ), ,N N Nx y z  represent the 
projected scattering points of the ground plane surface such 
that each point satisfies the plane equation 

0Ax By Cz D+ + + = .                               (3) 
The constant coefficients are determined from the resulting 
over-determined set of equations as 

1 1 1

2 2 2

1 0
1 0

1 0N N N

x y z A
x y z B

C
x y z D

     
     
     =
     
     

    

    

                  (4) 

The solution of this homogeneous relation is determined from 
the singular value decomposition (SVD) of the N by 4 matrix 
Q defined as 

1 1 1

2 2 2

1
1

1N N N

x y z
x y z

Q

x y z

 
 
 =
 
 
 

   

                             

(5) 

If the N scattering points perfectly coincide with the ground 
plane then there would be a single singular value of 0 that 
corresponds to the solution of the plane coefficients.  That is 
the corresponding right singular vector of Q with the zero 
singular value gives the [A,B,C,D] coefficients.  It is 
convenient to normalize these coefficients such that the 
coordinates of the plane normal vector of  

[ ]TA B C=en

                                

(6) 

is such that 1=en .  The appropriately scaled value of D 
gives the negative offset of the plane from the origin along the 
normal vector.  Also there is an ambiguity of the direction of 
the normal vector which is arbitrarily set to be such that C is 
positive.  Hence the normal will nominally be in a direction 
that is pointed away from the camera.  By definition, the 
ground surface normal in the { }, ,d d dx y z  system 

is [ ]0 0 1 T− .  Therefore we have

 
0
0
1

A
B
C

   
   =   
   −   

edR

                                      

(7) 

From this we can solve for the tilt angles using 

( ) ( )
( )

( ) ( )

sin cos

sin

cos cos

y x

x

y x

A a a

B a

C a a

= −

=

= −
                           

(8) 

The determination of the plane normal from the projected 
points can be seen in Figure 5 where the left side of the figure 
represents the observation of the projected scattering points on 
the ground surface and the right side displays the 3D point 
structure with the green vector representing the estimated 
plane normal. The final output of the 3DOF tilt and height 

compensation algorithm is a vector x ya a h  which will 

be used directly by the 3DOF differential update. Figure 6 
displays the set of normals calculated from a cluster of 
sampled 3D scattering points where the green lines represent 
the computed plane normals.   For this figure, rectangles cut 
out of paper where placed on the floor surface resulting in 
high quality feature points at the corners of the paper 
rectangles. The normals correspond to the normal of the plane 
in the neighborhood of the feature points.  
 



 

 
Figure 5 Determination of plane normal from projected points 
 

Due to small residual errors in the correspondence between 
the laser projector and IR camera of the Kinect, lens 
distortion, as well as the possibility that the ground plane is 
not perfectly planar, the smallest singular value will not be 
exactly zero but rather a small positive quantity.  If the 
smallest singular value is too large, this implies that the 
ground plane is not sufficiently planar for the accurate 
determination of the ego-motion trajectory.  However, there 
will generally always be (unless the plane surface is not flat or 
the data is excessively noisy) a singular value that is much 
smaller than the other three values.  The residual of this 
singular value relative to the three other larger singular values 
provides an indication of the quality of the scattering point 
data.  The tilt angles determined for the IR camera are directly 
applicable for the RGB camera also (provided that the IR and 
RGB cameras are suitably calibrated). 

 

 
Figure 6 Computed planar normal shown by green vectors 

 
III.II 3DOF Differential Update 

As the image frames are sampled at a rate of 30 frames per 
second from the RGB camera, corner based feature points (fp) 
representing high contrast texture regions of the ground 
surface are detected and tracked through consecutive frames 
using pyramidal Lucas-Kanade optical flow as seen in Figure 
7. [4, 5, 6, 8, 9]  

 
Figure 7 Trajectories of RGB fp’s shown by red arcs with the 

original fp indicated by green dots  
These fp’s are static relative to the { }, ,a a ax y z  frame. 
Furthermore they are assumed to be coincident with the 
ground plane such that the az component of each feature point 
is assumed to be 0.  Then we have a set of K fp’s denoted as  

{ }, ,,i i
x k y kf f .  Here the index i denotes the image frame, k 

denotes the feature index and { },x y denotes the estimate of 
the location of the fp on the ground surface consistent with the  

{ }, ,c c cx y z  frame (rotated and translated relative to 

{ }, ,a a ax y z ).  These feature points are paired with 
corresponding feature points of the previous frame given 

as{ }1 1
, ,,i i

x k y kf f− − .  If the correspondences cannot be found then 

the feature point is not used for tracking but stored for the next 
frame.  A credible feature point track must emerge before it is 
considered eligible for use in estimating the ego-motion.  In 
this way many of the sporadic feature points, that would 
distort the ego-motion estimate, can be pruned away.  The 
ground plane equation derived from the SVD is translated to 
the camera center of the RGB camera.  It is assumed that the 
RGB camera center is offset along the ex axis by a distance of 

camD from the camera center of the IR camera.  The 

coordinates of the RGB camera are denoted as { }, ,f f fx y z  

with the ground plane relation given as    

( ) 0f f f camAx By Cz D AD+ + + + =  
As the RGB camera is primary in terms of the projection of 
the ground feature points the geometry is modified slightly 
with the RGB camera now at the origin of the 

{ }, ,f f fx y z frame with the modified plane equation.  Next, 

the projection of the fp’s in the image plane onto the ground 
plane is calculated.  The first step is to determine where the fp 
resides on the ground plane.  This is based on a parametric 
vector.  Assume that the fp is in the image plane of the RGB 
camera that is relative to the { }, ,e e ex y z frame being co-



 

planar with the ( )0,0,1  plane with a ez  value for f.  The fp 
is represented in terms of coordinates i.x and i.y.  The position 
vector passing through the fp on the image plane to the actual 

fp on ground surface is [ ]. , . , Ti x i y f .  The interception point 

of the plane is then . . 0Ati x Bti y Ctf D+ + + = .  After 
determining t that satisfies this equation, the corresponding 
points on the ground plane may be computed.  The result is the 
position vector in the { }, ,e e ex y z  frame which is then 

transformed into the { }, ,c c cx y z  frame as seen in Figure 8.  

 
Figure 8 Projection of fp’s onto tilted ground plane 

 
The 3DOF differential update will be determined based on the 
frame-by-frame differential motion of the projected feature 
points.  Define baT   as the translation vector between the 

{ }, ,a a ax y z  and { }, ,b b bx y z  coordinate systems.  cbR  is 

the rotation matrix between { }, ,b b bx y z  and { }, ,c c cx y z  
coordinate systems given as  

( ) ( )
( ) ( )

cos sin 0
sin cos 0

0 0 1

z z

z z

a a
a a

 
 = − 
  

cbR

                    

(9) 

where za  is the positive rotation about the bz axis.   The 

affine translation between the { }, ,c c cx y z  and { }, ,d d dx y z  
coordinate systems is  

1 0 0 0
0 1 0 0
0 0 1

1

c
d

c
d

c
d

x
x

y
y

z
z h

 
     
     =     
   −     

 

                         (10) 

The motion of the kth feature point from the t-1th to the tth 
frame is described by the affine transformation in the 

{ }, ,c c cx y z frame as follows  

( ) ( )
( ) ( )

1
,

, ,, 1
,

, , ,

cos sin

sin cos 1

t
x kt

z t z t ix k t
y kt

y k z t z t i

fa a xf
f

f a a y

−

−

  ∆ ∆ −∆   =     − ∆ ∆ −∆         

 
(11) 

 

where ,z ta∆  is defined as the incremental CCW rotation of 
the camera relative to the ground reference frame.  That is the 
incremental azimuthal rotation of { }, ,c c cx y z  relative to 

{ }, ,b b bx y z .  This equation can be reorganized into the least 
squares format for the kth fp as 

 

( )
( )

,
1 1

, , , ,
1 1

, , ,

cos
1 0 sin

0 1

z t
t t t

x k x k y k z t
t t t
y k y k x k t

t

a
f f f a
f f f x

y

− −

− −

 ∆
 

   − ∆ =     − −    ∆     
 ∆     

(12) 

This is assembled for all of the K fp’s and the over-determined 
set of relations solved for the parameter vector 

of ( ) ( ), ,cos sin
T

z t z t t ta a x y ∆ ∆ ∆ ∆  .   

The summary of the steps of the overall procedure for both the 
tilt/height compensation and the differential update is given 
as:  
1. The IR camera determines the corresponding set of 
scattering points on the ground manifold. 
2. The SVD is used to determine the right singular vector 
giving the ground plane coefficients of {A,B,C,D} relative to 
the{ }, ,e e ex y z  coordinate system with the IR camera at the 
origin. 
3.  The D coefficient is modified as camD D AD→ +  which 
determines the ground plane with the RGB camera at the 

origin in the { }, ,f f fx y z  frame. 

4. The set of fp’s are determined as angles in the FOV of the 

RGB camera resulting in [ ]. , . , Ti x i y f  for each fp.  Here f is 

a suitable scaling factor such that [ ]. , . , Ti x i y f is a directional 

vector in the { }, ,e e ex y z  frame. 
5. Find the plane intercept point for each fp by solving 

. . 0Ati x Bti y Ctf D+ + + =  for t. 

6. Map the vector of  [ ]. , . , Tti x ti y tf  from the { }, ,e e ex y z  

frame to the { }, ,c c cx y z  frame. 
7. Proceed with computing the differentials in the 

{ }, ,c c cx y z  frame. 
8.     Integrate the differential parameter vector 

( ) ( ), ,cos sinz i z i i ia a x y ∆ ∆ ∆ ∆   to update the state 



 

variables and pass these back to the PF as an update for the 
frame. 

IV. SYSTEM CHARACTERIZATION 
A method of determining the accuracy of the HD trajectory 

estimate is to compute the residuals of the feature points back 
projected onto the reference ground plane. That is the state 
vector was determined for each update point of the trajectory.  
These variables defined the transformations such that the 
observed feature points could be back projected onto the 
ground plane.  Deviations along the axis directions could then 
be calculated.  Note that this procedure does not require a 
reference trajectory. Experiments were performed based on 
this procedure with the results given in Table 3 for static and 
dynamic motion. Indicated is the standard deviation (STD) of 
the parameters when the camera was held stationary for a 
period of 10,000 frames. The angular measurements are given 
in radians and the positional measurements are given in 
centimeters.  
 

 xa  ya  za  x  y  h  

STD 58.8 10−×  33.3 10−×  41.7 10−×  12.6 10−×  22.9 10−×  20.1 10−×  

Table 3 6DOF state variable standard deviation (units are 
radians and centimeters) 

An example scatter plot of the back projected feature points is 
shown in Figure 9.  The standard deviation of the back-
projected feature points was 11.8 10−× centimeters and 

27.1 10−×  centimeters for the x and y axes respectively with 
the dashed line ellipse indicating the deviation contour. 

 
Figure 9 Back-Projected Feature Points 

V. CONCLUSIONS 
This paper provides a description of a novel CV algorithm 

that is used to implement an accurate indoor location system 
for a HD.  This was based on a 6DOF trajectory tracking 

system that accurately accounted for the orientation and height 
of the HD.  Calculations of residuals based on back projected 
feature points onto the reference ground plane indicated that 
the trajectory estimate is very accurate with a standard 
deviation on the order of several millimeters per meter of 
trajectory length.  Combining the CV update estimates with 
the wireless observables in a PF results in an implementable 
indoor location technology applicable for HD’s that can be 
arbitrarily and randomly oriented.   
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