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Abstract
As the industrial adoption of machine learning systems continues to grow, there is incredible
potential to use this technology to revolutionize how medical diagnostic imaging is performed.
The ability to accurately classify the information contained within a medical image is of critical
importance for clinical implementation. Successful application of machine learning classification
algorithms has traditionally relied on the availability of copious amounts of labelled training data.
Unfortunately, medical datasets are typically small due to privacy constraints and the large cost
associated with annotating the data. To ameliorate this limitation, a training scheme is developed
in this thesis which can operate on small-scale datasets by using a generative adversarial network
to augment the dataset with synthetic images. Through quantifying the uncertainty in the
classification network, training samples are selected to maximize the performance of the classifier
while minimizing the amount of required data. Furthermore, privacy constraints are preserved as
the images sampled from the generative adversarial network are inherently anonymized. The
experimental results demonstrate the efficacy in this approach and viability for application in the

medical domain.



Acknowledgements
I would like to thank my supervisor Dr. Michal Okoniewski for his guidance during the
development of this thesis. His support has been critical to reach the completion of this project. |
would also like to thank my fiancée for making life beautiful through her unwavering love and
support. To my parents for the love, care, and guidance they have given me my whole life. To my
brother for the thunder in his heart and his desire to keep things rad. To Dan for his friendship,
support, and encouragement to take the hard road. To Karel for the enlightening conversations and

his guidance to make every move like a lightning.



Dedication

This work is dedicated to my beautiful Adelina whose love continuously inspires me.



Table of Contents

N 0131 Uod SRR P ORI i
ACKNOWIBAGEIMENTS ...ttt nb e ii
DT [ or: 4o o PSSR PSPPI v
TabIe OF CONTENTS ... bbbt eenreas %
LISt OF TADIES ... s Vii
List of Figures and HIUSEratioNS .........ccveiveiiiiii e viii
List of Symbols, Abbreviations and Nomenclature .............cccccceeeiieie e X
Chapter One: INTrOQUCTION. .........oiiiiiiiirerc e 1
1L PIOBIBM b 2
O U 0T 1SRRI 4
1.3 Qualitative Assessment of GAN AugMENtatioN ..........ccccvvvrieieienesereeeeeeeee e 6
1.4 ODJECTIVES ..vviveeieete sttt sttt et e e st e s te e te s e s te e teanaesaeeneeaneeareesneennenrens 8
1.5 CONEIDULIONS ...ttt nb et b et besnee 10
1.6 TNESIS OVEIVIBW .....viiieiieieeiie sttt ettt e ettt et e st e te st e sbeenteeneesneenseeneeaneens 10
Chapter TWO: BaCKgrouNd ...........ccuoiieiiie e 12
2.1 REIAEA WOTK ....cceeiiiieiiee ettt sttt snee 12
2.1.1 Image CIaSSITICATION ........ocueiviiiiiieiicieiee s 12

2.1.2 GeNerative MOUEIS. .......ccuoiiiieiiiiseceie e 14

2.2.3 Uncertainty ANAIYSIS .......ooiviiiieccic e 17

2.2 Machine Learning AlQOrithmsS ... 18
2.2.1 Image ClasSIfICALION .......cc.ecviiieiecie e 18
2.2.1.1 Neural Network ArchiteCture..........cooeiieiieiiiie e 18

2.2.2 GENEIAtIVE NETWOIKS ... ccviieieiieeieeie sttt sreenne e 27
2.2.2.1 GAN AFCRITECIUIE ..o.viviiiiieieeee e 28

2.2.2.2 DCGAN ..ottt bbb 30
2.2.2.3PGGAN ..ottt 31

2.2.2.4 EVAIUALION.....coviiiiiiiiiie it 32

2.2.3 Uncertainty ANAIYSIS .......ooiuiiiieccie e 34

2.3 SUIMIMAIY ...ttt ettt bbbttt et he bt e bbb e n e nbe s 37
Chapter Three: SYStem DESION ......cvcciiieiieie et sre e enes 38
3.1 SYSIEM OVEIVIEW ...ttt ettt ettt et e e b e e be e nbe e neas 38
3.2 DAtaSet PreprOCESSING .....veiveivirteeieesieie ettt ettt sttt bbbt 40
3.3 GAN TrAINING .c.vteieeiieieee ettt et e e s e et e e seesre e aeeneesneesreenes 44
3.3.1 GAN ArCHITECIUIES.. .ottt 44

3.3.2 Training and Performance Evaluation..............ccocviviiininienc e 48

3.4 Classification TrainiNg LOOP: .....coveiuieieiierie et sre e eneas 49
3.4.1 Classifier ArChItECIUIE. ........viiieeiee e e 49

3.4.2 Training FEEdDACK LOOP........cciiiiiiiiiiieiiesie e 51

3.5 SUMIMIAIY <ttt e bt e b bt e e sbb e e bb e e s b e e e nbeeeeneee s 53
Chapter Four: Experimental RESUIS ...........ooi i 54
g I 1 0T [T AT o PR 54



4.2 GAN TTRINING ..ttt ettt bbbt e b nbenre s 54

4.2.1 L0SS FUNCLION ANGAIYSIS .....eoiieieciieeee et 54
4.2.2 Qualitative Visual Assessment of Samples........ccccooveviiiiiiiiciicce e, 57
4.2.2.1 GAN Image Quality During Training.......cccccoeerveerieeriesieesensieeie e, 57
4.2.2.2 Final GAN Image QUality.........cccoeiveiiiieiieie e 59
4.2.3 Modeling the Discriminator QUEPUL .........cccveivieiieiie e 62
4.2.4 Assessing the GAN Sample QUality........ccoooiiiiiiiiiiiiic e 64
4.3 Interpreting Network UNCertainty.........cccvcveiieeieeieiieeseeseesie e e 65
4.4 Classification EXPErimMENTS ........ccoivieiiiiiiiecie et 68
4.4.1 Experiments With MINIST ..o 68
4.4.2 Experiments with LSUN and ISIC 2018..........ccccoovevviiieiiece e, 69
4.5 Assessment of Research Questions using Experimental Observations ................... 70
4.5.1 What Is the Difference in Classifier Performance If We Train Using Purely GAN
Synthesized Data vS. RaW Data? ...........cccocveveiiiriieeie e 70

4.5.2 What Is the Difference in Classifier Performance If We Train Using Random
Chosen Samples vs. Samples Chosen Based off Classifier Prediction Uncertainty?

.......................................................................................................................... 75
4.5.3 How Is the Capacity of the GAN Used to Generate Training Images Correlated
with the Final Classification Performance?..........ccocvvvvienieninsinieene e, 78

4.5.4 What Overall Performance Gain Can We Achieve from Using GAN
AUGMENTATIONT ..t e e e e e sreean 78
4.6 SUMIMAIY ...ttt b e s bbbt b e b e e bt b enre e nnes 82
Chapter Five: APPHCALIONS ........ooiiiie e ens 83
5.1 Disease Progression ANAIYSIS .......cciuiiiieiieiiie e se e sae e e 83
5.2 ACHIVE BAIMING.....uiiiieiiiieie bbb 85
5.3 ReiNfOrcement LEArNiNg ........ccvcvueiiieieeieiiesieese e seesie e ste e e e sse e e e e eneesneas 85
5.4 SUMIMIATY <.ttt ettt ettt e et e e st e et e e as b e e e ar b e e e esbe e e snbeeeseeeanseeeensneeensnaeas 86
Chapter SiX: CONCIUSIONS.........cviiiiiieii e 87
6.1 TNESIS SUMMAIY ...ecuiiiiieieciie it ettt s e te e sre et e e s s e s te e e e sreesteeneesneesraaneeaneens 87
6.2 CONEIIDULIONS ... et sb e e e 87
6.3 FULUIE WOTK ... ettt ettt e e nte s e sneenreenneaneens 88
RETEIBINCES. ...ttt bbbttt bbb 90

Vi



List of Tables

Table 3-1 Generator layer architecture for Small-DCGAN (100-dimensional latent space with
270,113 total trainable PArameterS)........coouiiiieiieieie e 45

Table 3-2 Discriminator architecture for Small-DCGAN (99,649 total trainable parameters) .... 46
Table 3-3 Training hyperparameters for Small-DCGAN and Large-DCGAN...........cccceevveiieenen. 46

Table 3-4 Generator layer architecture for Large-DCGAN (100-dimensional latent space with
1,040,705 total trainable Parameters)..........cccvviieieeiieiie s 47

Table 3-5 Discriminator architecture for Large-DCGAN (586,977 total trainable parameters) .. 47

Table 3-6 Overview of trained GAN arChiteCtUIES..........cccvviiiiriiieie s 49
Table 3-7 Classifier Architecture for MNIST (1,199,882 total trainable parameters) ................. 50
Table 3-8 Training hyperparameters for MNIST CIaSSIfIer .........cccoviiiiiniiiiieeee e 50
Table 3-9 Training hyperparameters for LSUN and ISIC 2018 Classifier.........c.cccccvevvviveiiennnnnn. 51
Table 4-1 Statistical description of disCriminator QULPUL...........cccevvieiiieiiiciie e 63

Table 4-2 1S and FID calculated for different GAN architectures. Note that larger Inception
score values indicate better generated results and smaller FID scores indicate better
0BNEIALEA FESUILS. ...ttt e et e e b e e srb e sbeesraeereeas 65

Table 4-3 Final test accuracy for best performing classifiers on MNIST using GAN data
Y0100 01=T 0] LA o] o SRS TS 81

vii



List of Figures and Illustrations

Figure 1-1 Samples generated from a GAN trained on the MNIST dataset.........c.ccccevveviivivieenen. 7
Figure 1-2 GAN samples generated from latent space interpolation. .............ccccceveieieicniiinienns 8
Figure 2-1 Simple single layer feedforward neural NEtWOrK. ..........c.cccevvviiiiieiiiie e 19
Figure 2-2 Multilayer feedforward neural NEtWOIK. ...........cccoeviiiiiiiic e 20
Figure 2-3 Convolutional neural network wWith 5 1ayers. ... 22
Figure 2-4 Activation FUNCLIONS. ........ccviiiiii i sre e 23
Figure 2-5 Original architecture for DCGAN generator network (Radford et al. 2015).............. 31

Figure 2-6 Visualization of the PGGAN training procedure, progressively growing the GAN
from low resolution up to the final image resolution of 1024x1024 (Karras et al. 2017).
On the upper half of the figure we see the generator network taking in a latent vector
and producing an image output. On the lower half of the figure we see the discriminator
processing the generated images together with raw images from the dataset (denoted in

the FIQUIE @S REAIS). ..ot 32
Figure 3-1 Overall design for the classification framework developed in this thesis. The

direction of each line indicates the flow of data. ..., 39
Figure 3-2 Example images from the preprocessed MNIST dataset. ..........cccovvereiiiieniiiniennn. 42
Figure 3-3 Example images from the preprocessed LSUN dataset. ...........cccovvevviieiieieeniesieennnnn 42
Figure 3-4 Example images from the preprocessed ISIC 2018 dataset. .........cccccevvevveiieeiieineene, 43
Figure 3-5 Distribution of class labels for the ISIC 2018 dataset...........c.ccoovvveeiereieieniieseee 43
Figure 3-6 Overview of the classification training l00p. ........ccccccviveiieic e 53
Figure 4-1 DCGAN discriminator training accuracy on the MNIST dataset ...........ccccccevvevinnne. 55
Figure 4-2 DCGAN training loss for discriminator and generator on the MNIST dataset........... 56
Figure 4-3 PGGAN samples during training on the MNIST dataset..........ccccccevvviveiiereeieiiennnn 57
Figure 4-4 PGGAN samples during training on the ISIC dataset...........c.ccoovveicieicieniiice, 58
Figure 4-5 PGGAN samples from ISIC 2018 dataset Categories ........ccccvevvereereiieereeseerieseennens 60
Figure 4-6 PGGAN samples from ISIC 2018 dataset Categories .........ccocevvvveveeiieiieesiieesie s 61
Figure 4-7 Samples from the GAN architectures trained on the MNIST dataset..............cccco...... 62

viii



Figure 4-8 Raw MNIST images with high BALD scores (top) and low BALD scores
(02010011 SRS 66

Figure 4-9 PGGAN generated MNIST images with high BALD scores (top) and low BALD
SCOIES (DOTLOIM)......ititiiieie ettt b bbbttt ettt b et neeneas 67

Figure 4-10 MNIST classification performance under various acquisition functions. The plots
on the left show the balanced accuracy for all 50 iterations, while the plots on the right
show the balanced accuracy for the final 20 iterations. The shaded area around each line
signifies a confidence interval of one standard deviation. ............cccocevveieiieennene e, 71

Figure 4-11 ISIC 2018 classification performance. The plot on the top shows the balanced
accuracy and the plot on the bottom shows the ROC AUC score. The shaded area
around each line signifies a confidence interval of one standard deviation.......................... 73

Figure 4-12 LSUN classification performance. The plot on the top shows the balanced
accuracy and the plot on the bottom shows the ROC AUC score. The shaded area
around each line signifies a confidence interval of one standard deviation.......................... 74

Figure 4-13 MNIST classification performance using pure GAN data. The plots on the left
show the balanced accuracy for all 50 iterations, while the plots on the right show the
balanced accuracy for the final 20 iterations. The shaded area around each line signifies
a confidence interval of one standard deviation.............cccoooeviereiienn i 77

Figure 4-14 MNIST classification performance using augmented GAN data. The plots on the
left show the balanced accuracy for all 50 iterations, while the plots on the right show
the balanced accuracy for the final 20 iterations. The shaded area around each line
signifies a confidence interval of one standard deviation. .............cccocevvvieiieesieene e, 79

Figure 4-15 MNIST classification performance for GAN data augmentation under random
acquisition. The plot on the left shows the balanced accuracy for all 50 iterations, while
the plot on the right shows the balanced accuracy for the final 20 iterations. The shaded
area around each line signifies a confidence interval of one standard deviation.................. 80

Figure 4-16 Plot of the best performing classifiers trained using GAN augmented MNIST
data. The plot on the left shows the balanced accuracy for all 50 iterations, while the
plot on the right shows the balanced accuracy for the final 20 iterations. The shaded area
around each line signifies a confidence interval of one standard deviation.................c........ 81

Figure 5-1 Using the PGGAN trained on the ISIC 2018 dataset to synthesize possible
melanoma disease progressions. The top row shows the starting image. A possible
disease progression is represented by each column. ...........ccoooveveiiiiiii e 84



List of Symbols, Abbreviations and Nomenclature

Symbol
GAN
SGD
CNN
ILSVRC

ROC
AUC

IS

FID
PGGAN

DCGAN
MNIST

LSUN
ISIC
HAM10000

BALD
RL
GPU
CPU
GDPR
MC
ELBO
VAE
KL

Definition

Generative Adversarial Network

Stochastic Gradient Descent

Convolutional Neural Network

ImageNet Large Scale Visual Recognition
Challenge

Receiver Operating Characteristic

Area Under Curve

Inception Score

Fréchet Inception Distance

Progressive Growing of Generative Adversarial
Network

Deep Convolutional Generative Adversarial
Network

Modified National Institute of Standards and
Technology

Large-Scale Scene Understanding
International Skin Imaging Collaboration
Human Against Machine with 10000 Training
Images

Bayesian Active Learning by Disagreement
Reinforcement Learning

Graphics Processing Unit

Central Processing Unit

General Data Protection Regulation

Monte Carlo

Evidence Lower Bound

Variational Autoencoder

Kullback-Leibler



Chapter One: Introduction

Over the course of the last decade, machine learning algorithms have achieved unprecedented
success in a wide spectrum of domains. Krizhevsky et al. (2012) released the first deep
convolutional neural network to win the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). This seminal work created a paradigm shift towards the use of deep neural networks
for computer vision tasks. Goodfellow et al. (2014) published the Generative Adversarial Network
(GAN) architecture, a game theoretic approach for training a pair of deep neural networks in
competition to generate realistic samples from a dataset. Current state of the art GAN architectures
are capable of generating images of human faces that are virtually indistinguishable from real
photos (Karras et al. 2018). Silver et al. (2016) released AlphaGo, the first Artificial Intelligence
(Al) system to beat the human world champion in the game of Go. The success of such systems
can be largely attributed to the following factors:

e Network Architecture: Artificial neural networks have become the workhorse of the
machine learning industry ultimately due to their incredible ability to learn which features
to extract from data. Several key engineering innovations have been made to encourage
convergence for deeper networks, enabling expressive hierarchical feature learning (Liu et
al. 2017).

e Computation: Advancements in graphics processing unit (GPU) technology has catalyzed
the training of deep convolutional neural networks due to the highly parallel nature of the
computation. The efficiency gain when training using a GPU over a central processing unit

(CPU) can be greater than an order of magnitude (Lawrence et al. 2017). The ubiquity and
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relative low cost of consumer GPUs has enabled high capacity networks to be trained in a
timely manner.
Data: Having copious amounts of labelled training data is key for supervised learning
tasks. The growth of the internet has stimulated the development of a global platform for
hosting, collecting, and sharing data. Platforms for crowdsourced data labelling such as
Amazon’s Mechanical Turk, have enabled large scale datasets consisting of millions of
datapoints such as ImageNet to be constructed (Deng et al. 2009, Callison-Burch et al.
2010).
Open-Source Initiative: There has been a fundamental shift in the way that tech giants
such as Google or Facebook operate in the field of machine learning. Instead of keeping
all models proprietary, these companies are releasing code under an open-source license
(Abadi et al. 2016). Academic research development is now accelerated through

accessibility to state-of-the-art models.

1.1 Problem

The purpose of image classification is to identify the different objects contained in an image. There

are a vast number of applications which rely on this technology. These include the use of

convolutional neural networks (CNNs) for image classification as a critical component of the

computer vision systems for driverless cars (Bojarski et al. 2016) and for facial recognition on

social media platforms (Taigman et al. 2014). Recently, deep neural network models have been

applied for medical image classification. As millions of medical images are captured and analyzed

by radiologists each year, integrating Al and machine learning into the medical system has the

potential to greatly improve diagnosis efficiency. Organizations such as the Canadian Radiology
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Association are pushing to incorporate increased utilization of machine learning for medical

imaging (Tang et al. 2018). Machine learning systems are capable of radiologist level diagnostics

as demonstrated by Rajpurkar et al. (2017) where a deep neural network was shown to achieve

radiologist level performance for pneumonia detection.

Despite the success of image classification using deep neural networks, several questions remain:

Data Privacy: One of the most pertinent questions in present day machine learning is how
to deal with data privacy. In medicine, patient privacy and confidentiality have always been
of utmost importance. Therefore, a critical question is how to handle medical data for
machine learning in a way which preserves the privacy of the individual in question but
provides the necessary information to successfully train diagnostic models. This question
extends beyond medicine and into the general private sector. On May 25, 2018 the General
Data Protection Regulation (GDPR) was implemented within the European Union which
mandates several restrictions over how personal data must be treated within organizations
to comply with privacy regulations (Kingston, 2017). While the practical implications of
this policy as still being assessed, the global push towards data privacy may require
machine learning algorithms to be modified to achieve compliance with such regulation.

Small Datasets: Empirically it has been observed that training deep neural networks
requires a significant amount of data to avoid overfitting (Caruana et al. 2001). The mantra
of the deep learning community has been to use as much data as possible for training neural
networks. During the 2012 ILSVRC, there were roughly 1.2 million images used for
training (Krizhevsky et al. 2012). Mahajan et al. (2018) demonstrated how a training set of

roughly 3.5 billion images from Instagram could be used to achieve state-of-the-art
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classification performance. To train neural networks with datasets at this scale requires a
significant computational infrastructure likely beyond the capabilities of a standard
academic institution. As the volume of global data continues to grow at a staggering rate,
a pressing question is how to best organize this data into suitable datasets for machine
learning training. Furthermore, application domains such as medical imaging have dataset
sizes which are orders of magnitude smaller than the data captured by social media
platforms. Therefore, image classification algorithms must be adapted to provide the
necessary performance when only small datasets are available.

e Unbalanced Datasets: A common issue when training image classifiers on medical
dataset is class imbalance. Most medical datasets have a large ratio of benign to malignant
training examples. To achieve the required classification performance various
oversampling and statistical weighting techniques have been applied (Rahman et. al 2013).
This is especially important in the medical domain since false negatives are significantly

more detrimental than false positives.

1.2 Purpose

In this thesis a classification framework is proposed and implemented that simultaneously
addresses the questions of dataset privacy, small-scale, and imbalance when training a
classification network. The core ideas behind this framework are 1) we train a GAN on the dataset
to generate synthetic images that can augment the training dataset and 2) we quantify the classifier
prediction uncertainty to sample the most informative GAN generated images for augmentation.
These ideas form the basis of a feedback loop that cycles between training the classification

network on the current training set and using the network prediction uncertainty to augment the
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training set with new images. This feedback loop, and specifically the ability to select GAN
samples which maximize classification performance, are the key innovative contributions

provided by this thesis.

Although the dataset used to train a GAN may be private, the samples generated by the GAN are
largely anonymized. Beaulieu-Jones et al. (2017) demonstrated how GANs could be used as a
privacy preserving mechanism for clinical data sharing. The level of anonymity within a dataset
can be quantified through the notion of differential privacy (Abadi et al. 2016). Intuitively the
definition of differential privacy states that if any data point from a dataset is removed, then the
resulting statistics computed based off this dataset do not change significantly. This constraint
insures that the private data of each individual data point in the dataset is sufficiently anonymized.
As an application, consider a hospital working in collaboration with a research institute, where the
research institute is training a diagnostic image classifier that requires the hospital data. Instead of
the hospital sending the raw patient data, the hospital can deliver a GAN trained on the private
data and capable of generating samples similar to the patient data but fully anonymized. In addition
to the privacy benefits, the GAN architecture provides a natural way to augment a dataset by
sampling synthetic images to either increase the dataset size or balance the amount of data between
classes. As a point of notation, we shall refer to data from the underlying non-synthetic dataset as

raw data.



The experimental work in this thesis aims to address the following research questions:
1) What is the difference in classifier performance if we train using purely GAN synthesized
data vs. raw data?
2) What is the difference in classifier performance if we train using randomly chosen samples
vs. samples chosen based off classifier prediction uncertainty?
3) How is the capacity of the GAN used to generate training images correlated with the final
classification performance?

4) What overall performance gain can we achieve from using GAN augmentation?

1.3 Qualitative Assessment of GAN Augmentation
Naturally an important question is whether using a GAN to generate samples to augment a dataset
has any benefit, or if it is simply insidiously self-referential. To address this question let us consider

what data augmentation entails. If we have a data point x and are given the ground truth conditional

distribution for the class label P(y|x), then a proper augmentation of the data is an augmentation

function of the data f (X) , such that P(y|x) = P(y‘ f (x)) In other words, a proper augmentation

does not change the underlying label of the data. Common augmentation functions include
geometric transformations such as rotations, shifts, and flips as well as color transformations. It
has been shown that using data augmentation during training can improve the performance of the
classifier (Wang et al. 2017). We can explain the increase in classifier performance through
recognizing that implicit constraints are imposed upon the data when we define an augmentation
function as label preserving. For example, consider building a classifier to detect circles. We can

rotate and translate the circle training images while preserving the ‘circle’ label, however if we
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scale the image nonuniformly we will no longer have a circle, but an ellipse. Therefore, providing
the classifier with augmented training data that implicitly emphasizes which transformations are
label preserving helps the classifier to learn the structure of the data, resulting in improved
classification performance. To prove that a GAN can provide valuable information for data
augmentation, we must demonstrate that it is capable of learning transformations of the data which
are label preserving. As a qualitative justification, consider Figure 1-1, where two images of the
digit ‘1’ generated from a GAN trained on the MNIST handwritten digits dataset are shown. Each
of these images was generated by passing a vector sampled from the GAN latent space through
the generator network. We can interpolate between these vectors and generate the intermediate
images shown in Figure 1-2. Notice how these images appear to be progressively rotating. This
implies that the latent space for the GAN has learned to encode rotation. Therefore, we can
qualitatively infer that the GAN is capable of generating images which are augmented by rotation.
It is important to note that no other information was provided to the GAN during training other
than the MNIST images. Hence, the rotation encoding in the latent space was learned directly from
the structure of the data. This result provides a qualitative justification that a GAN is capable of
implicitly learning appropriate augmentation functions such as rotation which have potential to

benefit data augmentation strategies.

Figure 1-1 Samples generated from a GAN trained on the MNIST dataset.
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Figure 1-2 GAN samples generated from latent space interpolation.

1.4 Objectives
The main objectives for this thesis are the following:

e Develop a classification framework using the TensorFlow (Abadi et al. 2016) and Keras
(Chollet et al. 2015) Python libraries to experimentally address the research questions
described in Section 1.2 using the following datasets:

o MNIST: The Modified National Institute of Standards and Technology (MNIST)
dataset consists of 60,000 training images and 10,000 testing images of handwritten
digits (LeCun et al. 1998). The MNIST dataset has long served as a classic
benchmark for computer vision and machine learning algorithms.

o LSUN: The Large-scale Scene UNderstanding (LSUN) dataset consists of
thousands of images from 10 different physical environments including dining
rooms, living rooms, bedrooms, bridges, kitchens, classrooms, restaurants, church
outdoors, towers, and conference rooms (Yu et al. 2015).

o ISIC 2018: The International Skin Imaging Collaboration (ISIC) 2018 Challenge
dataset consists of 10015 dermoscopic lesion images from seven different lesion
categories consisting of melanoma, melanocytic nevus, basal cell carcinoma,

actinic keratosis, benign keratosis, dermatofibroma, and vascular lesion (Codella
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et al. 2017). The images in this dataset were originally taken from the “Human
Against Machine with 10000 training images” (HAM10000) dataset (Tschandl et
al. 2018). The ISIC 2018 Challenge was designed to encourage researchers to
develop high performance classification algorithms on this dataset.

Demonstrate how the Progressive Growing of GAN (PGGAN) and the Deep Convolution
GAN (DCGAN) architectures can be trained on the MNIST, LSUN, and ISIC 2018
datasets. Investigate how the loss of the generator and discriminator networks converge.
Show how the quality and diversity of the samples can be measured using the Inception
Score (IS) and the Fréchet Inception Distance (FID) metric. Demonstrate how the 1S and
FID scores change as the capacity of the GAN is increased.

Develop the Convolutional Neural Network (CNN) architectures used for image
classification. For the MNIST dataset, design a CNN with suitable capacity that can be
trained efficiently from random weight initialization. For the LSUN and ISIC 2018
datasets, utilize the MobileNet architecture (Howard et al. 2017) pretrained on the
ImageNet dataset as a base model. Perform transfer learning to finetune the weights of the
network and demonstrate the convergence of the network. Quantify the performance of the
CNN architectures using balanced accuracy as well as the multiclass Receiver Operating
Characteristic (ROC) metric.

Demonstrate how dropout layers can be used in the CNN architectures to model Bernoulli
prior distributions over the CNN weights. Show how Monte Carlo (MC) samples can be
acquired from the CNN to estimate the posterior uncertainty. Analyze the output of the
GAN discriminator networks to determine appropriate thresholds to filter samples from the

GAN based on the likelihood of being a representative sample from the underlying dataset.
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Develop acquisition functions using random sampling, Bayesian Active Learning by

Disagreement (BALD), and maximum entropy to sample the images which provide the
greatest information gain for CNN training.

e Perform experiments using the developed classification framework to address each of the

research questions proposed in Section 1.2.

1.5 Contributions
The following describes the main contributions made by this thesis:
e Designed an importance sampling mechanism to prioritize GAN samples based on the
classification network uncertainty to maximize the final classification performance.
e Demonstrated how a PGGAN architecture could be trained to synthesize high resolution
medical images representing the I1SIC 2018 dataset.
e Developed an iterative feedback training loop to incrementally build up the training set
from GAN generated images to maximize the final performance of the classifier.
e Thesis work has been accepted for publication in the CVPR 2019 Workshop on Uncertainty

and Robustness in Deep Visual Learning (Nielsen et al. 2019).

1.6 Thesis Overview

The remainder of the thesis is structured as follows. Chapter 2 provides a literature review and an
overview of the machine learning technologies used for this thesis. Chapter 3 describes the
classification framework developed in this thesis, provides an outline of the preprocessing

operations applied to each dataset, and defines the architecture of the neural networks used for the
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GAN and classification models. Chapter 4 presents the results of the experimental work conducted
for this thesis. Specifically, the generated image quality is assessed for the trained GANS, a
qualitative interpretation of the classification network uncertainty is reported, and the results from
the classification experiments are used to address the thesis research questions. Chapter 5
investigates possible applications for the developed technology. Chapter 6 provides concluding

remarks, contributions made by the thesis, and a discussion of potential future developments.



12

Chapter Two: Background

The purpose of this chapter is to provide a literature review of related work and an introductory
overview of the machine learning techniques applied for this thesis. Section 2.1 will present a
literature review of related work and describe the historical development of the applied machine
learning models. Section 2.2 will discuss the algorithmic techniques behind each of the machine
learning models used in this thesis. Section 2.3 will summarize the presented material and motivate

the work proposed by this thesis.

2.1 Related Work
2.1.1 Image Classification

Over the last 50 years, and specifically in the last decade, the development of deep neural networks
for image classification has progressed from being an academic niche, to becoming a mainstream
industrial technology. In 1957, Frank Rosenblatt of the Cornell Aeronautical Laboratory developed
one of the first machine learning classifiers, called the perceptron (Rosenblatt 1957). The
perceptron was a machine designed for image recognition and consisted of 400 photocells
randomly connected to neurons whose weights were encoded in potentiometers. During the
training procedure, the weights were updated by electric motors. At the time of release, the
perceptron generated a large amount of public interest, however the expectations of its capabilities
were highly exaggerated. In a 1958 press conference organized by the US Navy, it was reported
that the perceptron was "the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence™ (Olazaran 1996). As

the perceptron was incapable of learning an XOR function, let alone being self aware, the hype
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from this development eventually gave way into a downturn in Al research. It was not until 1986
when the modern interpretation of neural networks was entrenched with the development of
backpropagation (Rumelhart et al. 1986). In 1998, the MNIST dataset was released and the first
CNN for image classification was developed (LeCun et al. 1998). A CNN is a neural network
architecture that contains convolutional layers. Further details on the CNN architecture are
presented in Section 2.2.1. A critical development, which catalyzed the development of machine
learning over the last decade, was the release of the ImageNet dataset (Deng et al. 2009). The
ImageNet dataset contains more than 14 million images from more than 20,000 categories that
have been hand-annotated by humans using the Amazon Mechanical Turk crowdsourcing
platform. Starting in 2010, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
was run where competitors could compete to build classifiers capable of the best performance on
the dataset (Russakovsky et al. 2014). It was in 2012 that the first deep convolutional neural
network called AlexNet competed in the ILSVRC (Krizhevsky et al. 2012). AlexNet not only won
the competition but was able to achieve a 10.8 percentage point improvement over the next runner
up for top-5 error performance. This unprecedented achievement catalyzed the development and
research of deep convolutional neural networks for classification tasks. In 2014, the winner of the
ILSVRC was the Inception network (Szegedy et al. 2015). The main innovation was the
development of Inception modules which allowed for convolutions with different size kernels to
be processed in parallel. In 2015, the winner of the ILSVRC was the ResNet network (He et al.
2016). The main innovation provided by ResNet was the use of residual blocks which allowed for
the networks to extend to unprecedented depths. The winning network had 152 layers. Huang et
al. (2016) proposed the DenseNet architecture which uses dense blocks similar to the ResNet

residual blocks to achieve trainable networks with over 200 layers. As most network architectures
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consist of millions of parameters, they are difficult to use on low power devices such as mobile
phones. Howard et al. (2017) released a network architecture called MobileNet which has far fewer

parameters than AlexNet and achieves better performance on the ImageNet dataset.

2.1.2 Generative Models
Unsupervised learning is the process of extracting meaningful patterns from data that do not have
given labels. An application of unsupervised learning is for estimating and generating samples
from an underlying dataset distribution. Models of this type are called generative models.
Salakhutdinov et al. (2007) proposed the restricted Boltzmann machine as a neural network
architecture capable of learning a probability distribution over its set of inputs. Restricted
Boltzmann machines can be trained using gradient descent and backpropagation. Another model
variety capable of learning a representation of the underlying data distribution are variational
autoencoders (VAEs). VAEs use an architecture consisting of an encoder and decoder neural
network (Doersch 2016). The encoder network takes the input image and transforms it into a set
of parameters describing an underlying latent space distribution. This latent distribution is than
sampled and the resulting latent vector is passed through the decoder network which attempts to
reconstruct the original image. VAES are autoencoders since they learn to reconstruct the original
image and are variational since they learn to approximate the underlying data distribution as a
parameterized variational latent space. A VAE is trained by maximizing a lower bound on the log
likelihood of the data called the Evidence Lower Bound (ELBO) (Kingma et al. 2013). The
primary advantage of VAEs over other generative models is that the relationship between the data

and the underlying latent space is directly modelled using the encoder and decoder networks. One
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limitation of VVAEs is that the ELBO loss function does not produce images which have the highest
visual quality due to the averaging effects of maximizing the log likelihood.

Another class of generative models are autoregressive models. The essence of an autoregressive
model is to learn the conditional distribution of every pixel in an image conditioned on all
previously sampled pixels. Synthetic images can be generated one pixel at a time using the
likelihood function learnt by the network. Models such as the PixelRNN have had great success in
generating high quality samples (van den Oord et al. 2016). However, the sampling process is

inefficient and does not directly model a low dimension latent space for the data.

A further variety of generative models are GANs. The develop of GAN architectures has been
extremely rapid since their original conception in 2014. The initial paper on GANs was written by
Goodfellow et al. (2014) and the focus of this original work was to describe the minimax
competition between the discriminator and generator. Experimental verification of the technique
was provided by qualitatively showing the quality of the generated images after training on the
MNIST and the CIFAR-10 datasets. An extension was made by Mirza et al. (2014) to condition
both the generator and discriminator model on the label of the training data, enabling samples to
be generated from specific class labels. This work was expanded by Radford et al. (2015) when
the DCGAN architecture was developed which used deep convolutional neural networks for both
the generator and discriminator models. Additionally, it was shown how generated samples from
the trained GANs could be used for semi-supervised learning, where the initial layers of the
discriminator are used as a feature extractor to train a classification model. Denton et al. (2015)
proposed the Laplacian GAN (LAPGAN) model where a cascade of discriminator and generator

neural network models were trained at each level of a Laplacian pyramid to generate images in a
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coarse to fine process. Odena et al. (2016) developed the auxiliary classifier GAN framework
where in addition to predicting the validity of the given data, the discriminator was trained to
classify the label of the real data. This addition to the discriminator was shown to provide better
performance by teaching the discriminator to disentangle the features specific for different classes.
Due to the instability of training GANSs using original loss function presented by Goodfellow et al.
(2014), Gulrajani et al. (2017) released an improved loss function based on the Wasserstein
distance. Theoretically the Wasserstein loss has smoother gradients and greater stability over the
loss function proposed by Goodfellow et al. (2014). The PGGAN architecture was released in 2017
and provided an approach to train a GAN architecture by training the discriminator and generator
models on lower resolution samples before progressively growing toward high resolution samples
(Karras et al. 2017). Samples generated from the PGGAN architecture after being trained on a
celebrity face dataset were the first photorealistic generated images of humans by a GAN at the
resolution 1024x1024 pixels. In late 2018, the style-based generator architecture for GANs was
released, demonstrating how the generator network can be improved through the use of synthesis
networks to customize the style being generated by the GAN (Karras et al. 2018b). The
experimental analysis of GAN behaviour led to a number of different techniques described by
Salimans et al. (2016) to improve the stability and measure the quality of the samples produced by
a GAN. It was in this paper that the Inception Score was proposed as a benchmark to measure the
quality and diversity of the sample generated by a GAN. Heusel et al. (2017) proposed the FID
metric as an improved benchmark over the Inception Score for assessing GAN quality. Wang et
al. (2017) demonstrated how GAN samples can be used for data augmentation. However, the
images were sampled randomly from the GAN latent space and provided minimal improvement

for the final classification performance.
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2.1.3 Uncertainty Analysis
The question of how to quantify uncertainty has its roots in probability and estimation theory and
has a rich history. During the 18" century Thomas Bayes proposed a mechanism now referred to
as Bayes’ rule which describes the probability of an event given prior knowledge of factors that
might influence the event. Although the original concept was defined by Bayes, the effort to
develop the idea was performed by Laplace where he used the Bayesian approach to estimate the
mass of Saturn with a high degree of accuracy (Sivia et al. 2011). Interestingly during much of the
20" century, Bayesian statistical methods were much less popular compared to frequentist
statistical methods due to the philosophical and practical concerns associated with choosing
appropriate prior distributions and computation of the posterior. Bayesian methods gained
significant popularity with the discovery of Markov Chain Monte Carlo (MCMC) methods which
enabled sampling from complex posterior distributions (Andrieu et al. 2003). Development effort
was directed toward transforming neural networks into Bayesian networks by placing prior
distributions over the weight parameters in the network (Tishby et al. 1989). Radford (1996)
demonstrated that a neural network with prior distributions over the weights and infinitely wide
hidden layers corresponds to a Gaussian Process model. Recently an approximation approach was
developed using dropout to learn the prior distribution over the weights of the network through a
process called Bayes by Backprop (Blundell et al. 2015). The advantage of this method is that the
prior distribution of each parameter is learned simultaneously as the network is trained.

Additionally, computing samples of the posterior using this method is highly efficient.
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2.2 Machine Learning Algorithms
The purpose of this section is to present the machine learning techniques used to build the

classification framework for this thesis.

2.2.1 Image Classification

The classification task can be defined in the following way: we have a dataset consisting of input

data X ={x,,X,,*--,X, }and corresponding labels Y ={y,, y,,-, ¥, } and our goal is to model the

conditional distribution P(y | X, X,Y) such that we can make inferences on this distribution to

find the optimal label y to assign to a new data point x. One method to solve this problem is to
approximate the discriminative distribution using a parameterized function. In this case we have a
function f“’(x) = P(y|x,X,Y)where o is the set of parameters describing the function. Deep

neural networks are one such functional form that have had tremendous success at approximating
the discriminative distribution. The remainder of this section will describe the structure of deep

neural networks and how they can be trained for the classification task.

2.2.1.1 Neural Network Architecture
The inspiration for neural networks initiated from attempting to model the biological neural
structure in the human brain. At a high level, a biological neuron senses stimulus from dendritic
connections, combines these signals, and if the combined signal surpasses an activation threshold,
an output signal propagates down the axon towards other neurons. In a similar way, an artificial

neuron receives input from the neurons in the previous layer, combines this input and passes the
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combined signal through an activation function whose output it propagated to the next layer. A
neural network is composed of layers of neurons typically connected in a directed acyclic fashion,
known as a feedforward network. The inputs to a neuron are combined as an affine transformation.
The activation function is a nonlinear function that takes the result of this affine transformation
and passes forward the output to the next layer of neurons. The critical component that enables the
functional approximation power of neural networks is the nonlinearity of the activation function.
This gives the neural network the ability to model highly complex transformation. This is described
formally by the universal approximation theorem (Csaji 2001). If the activation function was

linear, then the entire neural network would collapse down into a single affine transformation.

Let us consider a simple single layer neural network which maps an input vector x € R"into a

scalar output y € R". We can write the expression for this mappingas y = f (Wx+b) where f ()

is a nonlinear activation function, Wis a weight matrix and b is the bias vector. We can represent

this network visually as seen in Figure 2-1.

Size 4 Size 1
Input Layer € R* Output Layer € R’

Figure 2-1 Simple single layer feedforward neural network.
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We can extend this concept to networks with greater number of layers by simply taking the
functional composition of neuron outputs. For example, consider modifying the neural network

from Figure 2-1, by adding two hidden layers with sizes 10 and 3. We can now write the total
composition of the neural network as follows y = f3(W3 fz(W2 fl(Vle+b1)+b2)+b3), where

{W,, W,, W, } are the weight matrices, {b,,b,,b,} are the bias vectors, and {f,( ), f,( ), f,( )}

are the activation functions for the layers of the neural network. A graphical representation of this

neural network is shown in Figure 2-2.

b
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Figure 2-2 Multilayer feedforward neural network.
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A neural network layer of the form y = f (Wx+b) is called densely connected since every neuron

from the previous layer contributes to the stimulus of each neuron in the next layer. As image data
is very high dimensional, using densely connected layers quickly becomes computationally
intractable due to the large number of required parameters. Since most images exhibit local spatial
structure it is possible build a network layer which uses a relatively small spatial neighborhood of
neurons to compute the stimulus for the next layer. Computationally this local neighborhood
combination can be performed by convolving the image with a set of learned kernels. Similar to
the densely connected layers, a nonlinear activation function is applied after the stimulus has been
computed. To reduce the dimensionality of the data, pooling layers are used which reduce the
output from a spatial neighborhood of neurons to a single value. Max-pooling is commonly used
and is performed by outputting the maximum value within a spatial neighborhood of neurons. The
standard structure of a CNN is to have a series of convolutional layer at the beginning followed by
densely connected layers at the end. An example of a 5-layer CNN is shown in Figure 2-3. The
input image size is 128x128 pixels with 3 color channels. The first convolutional layer consists of
a stack of 8 kernels each with size 7x7 pixels and max-pooling is used to reduce the image to
64x64 pixels. The second convolutional layer consists of a stack of 16 kernels each with size 5x5
pixels and max-pooling is used to reduce the image size to 32x32 pixels. The third convolutional
layer consists of a stack of 32 kernels each with size of 3x3 and max-pooling is used to reduce the
image size to 16x16 pixels. The image is then flattened into a vector and sent through the fourth
layer which is a densely connected layer with size of 256. The final fifth layer is a densely

connected layer of size 128.
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32@16x16

3@128x128

8@64x64

1x128

Max-Pool Convolution Max-Pool Dense

Figure 2-3 Convolutional neural network with 5 layers.

A wide range of activation functions are used in practice. Five of the activation functions used for

this thesis are described below:

e Sigmoid: The sigmoid function is defined as f(x): and is a monotonically

—-X

1+e
increasing function that maps a real value input into an output between 0 and 1. In neural
network design, the sigmoid activation is commonly used for logistic regression to output

a valid probability value.

e Tanh: The tanh function is defined as f (x) = and is a monotonically increasing

—-X

e )
|

function that maps a real value input into an output between -1 and 1.

e ReLU: The Rectified Linear Unit (ReLU) function is defined as f (x)=max(0,x)and is

a piecewise linear function that is differentiable everywhere except at 0.

ax forx<0

and is a
x forx=>0

o Leaky ReLU: The Leaky ReLU function is defined as f (x) :{

piecewise linear function similar to the ReLU with the difference being that when x<0
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the function ‘leaks’ by having outputting the value aXwhere « is typically a small
number such as 0.01.

e Softmax: The softmax activation function is slightly different in purpose to the activation

functions described previously as it is a vector function rather than a scalar function. For

X

e i
N %o
n:le

a given vector of length N, the softmax function is defined as f; (x): . The

softmax activation is used to normalize the output of a given layer into a valid probability

distribution.

A key feature of the activation functions described above is the computational simplicity. Figure

2-4 displays a plot of these activation functions.

sigmoid tanh
1.0 1 14
0.5 4 0+
0.0 1 T T T T T —11 T T T T T
-5.0 -25 0.0 2.5 5.0 -5.0 =25 0.0 2.5 5.0
relu leaky relu with alpha=0.1
4 - 4 -
2 27
0 -
07 T T T T T T T T T T
-5.0 =25 0.0 2.5 5.0 -5.0 =25 0.0 2.5 5.0

Figure 2-4 Activation functions.

Since the goal of a classification network is to produce an estimate of the conditional label

distribution P(y|x,X,Y), we must ensure that the output of the neural network is in fact a valid
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probability function. A probability distribution is valid if all probabilities are between 0 and 1
inclusive, and the sum of the probabilities of all possible outcomes is equal to 1. One commonly
used method to achieve this is to have the final activation of the network be a softmax function.
This ensures that the output is a valid distribution. After computing the output probability
distribution, the next step is to have some metric which can assess the quality of the predictions
such that we can train the network to improve its performance. The most common way to do this
is to compare the network label predictions and ground truth label distribution using cross-entropy

loss (Janocha et al. 2017). For the sake of brevity in our notation, let us define yas the neural
network output estimate of P(ylx, X,Y), and y as the ground truth label distribution for the

sample. Suppose that we have N possible labels. The cross-entropy loss is defined as the cross-

A

entropy between the ground truth distribution y and the estimated label distribution y. We can

write the cross-entropy loss as

N-1

H(y.9)==2_x109(,) 2.1)

Since the ground truth distribution will be 0 everywhere except at the actual label index y, where

it will be 1, we can simplify the cross-entropy loss as follows

H(y.9) =2, l0g(§,) =Y. log(J.) 22)

To understand the intuition behind the cross-entropy loss, we can write the expression in terms of

the Kullback-Leibler (KL) divergence (Shlens 2014) as

H (y’y) =H (y)+ D (y”)A/) (2.3)



25

Therefore, minimizing the cross-entropy loss with respect to y is equivalent to minimizing the KL

divergence between the ground truth distribution and the estimated distribution. During training it
IS common practice to process multiple samples simultaneously in a batch, hence the total loss for

the neural network is the average cross-entropy loss over all of the input samples in the batch.

Before a neural network is trained, each parameter is typically assigned a starting value based on
an initialization strategy (Hanin et al. 2018). One possible strategy is to use what is known as
Xavier uniform initialization (Glorot et al. 2010). This technique initializes the parameters by
randomly selecting values from the uniform distribution using a range that is inversely proportional
to the number of neurons in the previous layer. Therefore, the larger the previous layer, the smaller
the initialized values will be. The purpose of this approach is to assign initial values to parameters

which would not cause the gradients to either explode or vanish at the start of training.

Training a neural network boils down to an effective use of the chain rule from rudimentary
calculus. The individual functions which make up a neural network each have analytical gradients
that can be computed in an efficient manner. Computing the gradient of the loss function with
respect to the parameters in the network is accomplished through preceding backwards through
the network using the chain rule to compute the gradients at each layer of the network. This
procedure of calculating the gradients in a neural network is called backpropagation. As
feedforward networks are directed acyclic graphs, computing the gradients in very large networks
can be done efficiently. Software packages such as TensorFlow have been released to automate
the gradient calculation (Abadi et al. 2016). After the gradients have been computed, a numerical

optimizer is used to determine how each weight in the network must be adjusted to reduce the



26
overall loss value. The simplest optimization method is known as Stochastic Gradient Descent
(SGD) where each parameter is updated proportional to its gradient. The constant of
proportionality is called the learning rate and is a hyperparameter that must be specified before the
network is trained (Ruder 2016). More sophisticated optimization methods such as AdaDelta and
Adaptive Moment Estimation (Adam) have been developed to provide benefits over basic SGD
by using momentum and adaptive learning rates in the gradient update equation (Zeiler 2012).
When a dataset is highly unbalanced, it may be necessary to train the classifier using a weighted
loss function (Janocha et al. 2017). A weighted loss function is computed by weighing the
contribution of each individual training image inversely proportional to the number of occurrences
that the training image label category has in the training set. This has the effect of placing more
importance on underrepresented label categories. During training, the loss function can be
monitored to analyze how well the neural network is learning. An epoch is defined as the number
of training iterations required to process each image in the training set. A network will typically
be trained for a fixed number of epochs. Knowing how many epochs is necessary to achieve

convergence depends on the data and the network design.

Many techniques have been developed to improve the convergence of deep neural networks during
training (Gu et al. 2015). A strategy known as batch normalization is often applied between the
layers of a neural network to learn the statistics of the activation outputs (loffe et al. 2015). The
activation statistics are then used to normalize the data such that the activations of the layer are
uniformly scaled which improves the stability of the gradients during training. Another technique
that is widely used is transfer learning. Training a large image classification network from scratch

typically requires a lot of data. The goal of transfer learning is to combat this problem by
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pretraining a network on a larger dataset and then finetuning the parameters on a smaller dataset.
The reason why this is successful is that deep neural networks tend to learn a hierarchical
representation of the data (Krizhevsky et al. 2012). As low-level geometric features such as lines
and corners are common across a wide range of images, the features extractors learnt on larger

datasets can be transferred for training classifiers on smaller datasets.

There are several metrics commonly used to evaluate the performance of a classification network
(Hossin et al. 2015). One of the simplest and most commonly used methods is to calculate the
prediction accuracy. Prediction accuracy is defined as the ratio of correct predictions to the total
number of predictions. For unbalanced datasets, the concept of prediction accuracy can be
extended to form the balanced accuracy metric. Balanced accuracy is defined as the average of the
prediction accuracies for each individual label category. Another approach to measure
classification performance is to use the ROC curve. The ROC curve is defined for a binary
classifier as curve describing the true positive rate as a function of the false positive rate. The area
under the curve (AUC) of the ROC can be used as a metric to assess the performance of a binary
classifier (Hajian-Tilaki 2013). This methodology can be extended to a multiclass classifier by

computing the average ROC AUC for each individual label.

2.2.2 Generative Networks

A generative network is a neural network that can be trained using images from a dataset to learn
a representation of the underlying dataset distribution p,,, (X). Once trained, a generative network

can be used to generate synthetic images which closely resemble images from the underlying
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dataset. By defining the representation of p,,, () in terms of a lower dimensional space called a

latent space, it is possible to disentangle abstract visual features, allowing specialized samples to
be generated by manipulating the latent vector space. Due to sampling efficiency and the high
visual fidelity of the generated images, GANs will be used in this thesis as the underlying
generative model. There are two GAN architectures used in this thesis, the DCGAN and the
PGGAN. The remainder of this section will examine the details of these particular GAN
architectures as well as the metrics used to evaluate the diversity and quality of the generated

samples.

2.2.2.1 GAN Architecture
As described in Section 2.1.2, a GAN consists of two networks called a generator and a
discriminator which are trained competitively against each other. The generator attempts to
generate samples indistinguishable from an underlying dataset, and the discriminator attempts to
infer whether an image is synthesized by the generator or from the underlying dataset. A relevant
analogy to the GAN architecture is to consider the competition between a counterfeiter and a bank.
The counterfeiter attempts to generate fake currency which closely resembles real currency, while
the bank develops the means to discriminate between real and fake currency. As this game is
played, both the counterfeiter and the bank continue to improve their ability to generate and
discriminate currency respectively. In game theory this is known as a zero-sum non-cooperative

game, where the optimal convergence point is the Nash equilibrium (Mescheder et al. 2018).
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To describe this formally, let us denote the generator and discriminator networks as G and D

respectively. The goal of the generator is to take an input vector z, which has been sampled from

the generator’s latent space z ~ p,(z) and to produce an image G (z)which closely resembles a
sample from the data distribution p,,, (x). Let the distribution of samples from G(z) be
described as the generator distribution p,,......r (X). The goal of the discriminator is to differentiate
for a given sample x whether it was more likely to have been produced by p,,,(x) or
Pyeneraor (X) - IT the discriminator believes that x ~ p,, (X), then it will output a value close to 1,

likewise if the discriminator believes that X ~ Py, (X) then it will output a value close to 0.

We can now define the minimax loss function for a GAN as follows:

minmaxV (D,G)=E, , [logD(x)] +B, 0 [Iog (1— D(G (z)))] (2.4)
Where V (D, G)is called the value function and T represents the expectation operator. Therefore,
the term Ex~pda[a(x) [Iog D(x)] can be interpreted as the expected value of log D(x) where

X ~ Pyaa (X) . The intuition behind why the loss function uses the log function is to heavily penalize

the discriminator for being incorrect. To understand what this loss function is trying to achieve we

can look at each component separately.

Ewm(x)[log D(x)]: Intuitively this quantity describes how much the discriminator

believes that samples from the dataset distribution are real. This quantity has no

dependence on G.
L [Iog (1— D(G (z)))} - This quantity describes how much the discriminator believes

that the samples from the generator are fake. During the minimax game, D will attempt to
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maximize this quantity by classifying the generator samples as fake, while G will attempt

to minimize this quantity by generating samples which fool the discriminator.

2.2.2.2 DCGAN
When Goodfellow et al. (2014) released the original GAN architecture, only dense feedforward
neural networks were used for the discriminator and generator models. The key innovation in the
DCGAN architecture was to use convolutional layers in both the discriminator and generator
models (Radford et al. 2015). To generate the final image dimensions, fractionally-strided
convolutions were used in the generator. A fractionally-strided convolution is performed by first
inserting zero padding between the pixels in the image and then performing the convolution
operation. The purpose of using a fractionally-strided convolution is to increase the output image
size relative to the input image size. As the loss function for the DCGAN is the same as the original
GAN, the training procedure is similar. The original architecture for the DCGAN generator can be
seen in Figure 2-5. Starting from the left in Figure 2-5, we see that a latent vector with 100
dimensions is processed by a dense layer and then reshaped to form an image of size 4x4x1024.
Afterwards, 4 fractionally-strided convolutional layers are used to gradually increase the image

size up to the final output size of 64x64x3.
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Figure 2-5 Original architecture for DCGAN generator network (Radford et al. 2015).

2.2.2.3 PGGAN
The key innovation in the PGGAN architecture is that the generator and discriminator networks
are trained starting from low image resolution and progressively growing to the final large image
resolution (Karras et al. 2017). This process is demonstrated in Figure 2-6. As the networks
transition to train at higher resolution, linear interpolation between layer outputs is used to smooth
the transition. Each time the PGGAN transitions to a higher resolution, the width and height of the
images are doubled. Therefore, an important consideration when training a PGGAN is that width
and height of the training images must be a power of 2. The PGGAN loss function is largely based
off the improved Wasserstein metric (Arjovsky et al. 2017). Intuitively, the Wasserstein distance
can be thought of as the minimum cost of transporting mass in the generator image distribution to
form the dataset distribution. In addition to the Wasserstein metric, the PGGAN also utilizes labels
on the dataset to incorporate an auxiliary classifier in the discriminator (Odena et al. 2016). In

addition to predicting whether the data is real or fake, the discriminator is trained to maximize the
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log likelihood of the correct class label. The auxiliary classifier loss encourages the discriminator

to learn the image features which distinguish different classes.
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Figure 2-6 Visualization of the PGGAN training procedure, progressively growing the GAN
from low resolution up to the final image resolution of 1024x1024 (Karras et al. 2017). On the
upper half of the figure we see the generator network taking in a latent vector and producing an

image output. On the lower half of the figure we see the discriminator processing the generated
images together with raw images from the dataset (denoted in the figure as Reals).

2.2.2.4 Evaluation
After a GAN has finished training, it is important to have some metric which can measure the
quality and diversity of the samples produced. Two commonly used metrics for this purpose are
the Inception Score (1S) and the Fréchet Inception Distance (FID). Both the Inception Score and

the FID will be used to evaluate the quality and diversity of GANSs trained for this thesis.

The IS is based on using the output of the Inception classification network that has been pretrained

on the ImageNet dataset. If the GAN produces good quality samples, then the conditional

distribution p(y | x) of the output label y given a generated sample x would be expected to have

high predictability and hence low entropy. On the other hand, if the generated distribution is
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diverse, then the marginal distribution p(y) =Exwpgemr(x)[p(y|x)] should have high entropy.

Using these intuitions, the IS forms the scoring metric based on the KL divergence between the

conditional distribution p(y|x) and the marginal distribution p(y) as follows

1S( Py () =P, 9 [ Pua (R(YI (1) ) 29

A larger IS indicates a better generator distribution. One of the limitations of the IS metric is that
it does not compare the generated images against the real images from the dataset. Therefore, the
IS metric does not provide any information regarding how well the generator distribution matches

the dataset distribution.

The FID metric improves upon the IS metric by comparing the distribution of Inception layer
activations for both the synthetic generated data and the raw dataset. A multivariate Gaussian is
used to model the distribution for the Inception layer activations. The FID is calculated by the

following expression

Fl D( pdataset (X) ' pgenerator (X))

2+Tr(z +3 »

dataset generator dataset

1 2.6
2(x Zj (29)

= H/udataset - /ugenerator generator )

WHhere e eraor @NA Hyyaee denote the mean vectors of the Gaussian model for the generator and

dataset Inception layer activations respectively, while X and X denote the covariance

generator dataset

matrices for the generator and dataset Inception layer activations respectively. Smaller FID values

indicate better quality and diversity of the generator distribution.
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2.2.3 Uncertainty Analysis

Suppose that we have a dataset consisting of input data X:{xl,xz,---,xN}and corresponding
outputs Y:{yl,yz,---,yN} and we have trained a neural network classifier to estimate the

discriminative distribution P(y|x,X,Y') such that we can make inferences on this distribution to

find the optimal label to assign to a new data point x. A pertinent question is how we can assess
the uncertainty that the classifier has about the estimates it makes so that we can assign a
confidence level to the assigned classification label. One metric commonly used to measure the
amount of uncertainty in a probability distribution is entropy. Entropy measures the average

information content in a distribution and is defined as:
H(X)=E[-log(P(X))] 2.7)
Where P(X) is the probability mass function. A possible approach to measure the uncertainty

that a classifier has about a new data point X is to calculate the entropy of the discriminative

distribution:

H(y[%X,Y)=E[-log(P(y[x X, Y))] (2.8)
Where P(y | %, X, Y) is the predictive probability mass function of the neural network conditioned
on the new data point x and the dataset used to train the network X, Y . To compute the predictive
probability mass function P(y|x,X,Y), the classification network is first trained using X,Y and

then the new data point X is passed through the network as input. The resulting output of the

neural network is a vector describing P(y[x X,Y). H(y[x X, Y) can be calculated by

computing the entropy of this output vector. Unfortunately, Gal (2016) demonstrated that simply
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using a point estimate of the classifier output distribution is not sufficient to properly model the
uncertainty. This is due to the softmax activation function exaggerating the prediction confidence.
Hence, while the output probabilities of the softmax activation are good for prediction, they must
be calibrated to represent the true probabilities (Guo et. al 2017). A solution to this problem is to
form a better estimate of the uncertainty by placing prior distributions on the parameters of the
network such that a larger number of samples can be used to estimate the uncertainty. We can

write the predictive distribution as a function of the neural network parameters ® such that

P(y|x X, Y)=f°(x). Now using Bayes’ Rule, we can expand this distribution as follows:

P(yIxX,Y)
= [ P(y,0|xX,Y)do (2.9)
= [ P(YI%XY,0)P(0]xX,Y)do

The first step follows from expanding the marginal distribution in terms of the joint distribution,
and the second step follows directly from the definition of conditional probability. In the final

expression, we have two terms in the integral. Let us examine what these terms represent.
The first term P(y | x,X,Y,m) is the output of the neural network and describes the probability
of each classification label. The second term P(mlx,X,Y) describes the distribution over all

possible network parameters given the training data. As the network parameters o are initialized
randomly and the neural network is trained using stochastic gradient descent, the final parameters

values of the trained network will also vary stochastically, and this is described by the distribution

P (co | x, X, Y) . As a large deep neural network can easily have millions of parameters, calculating

P(m | x,X,Y) directly is computationally intractable. To mitigate this problem, we can use the

methods of variational inference to develop a distribution which closely approximates
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P(®]x,X,Y). Kendall et al. (2017) and Gal et al. (2015) show how dropout can be used as

technique of sampling from a distribution which approximates P(m|x,X,Y) by assuming

Bernoulli prior distributions for the weights. Dropout is a technique which was proposed originally
to regularize a neural network for prevention of overfitting (Srivastava et al. 2014). The basic
premise is that during training, a Bernoulli random variable is sampled for each network parameter
where dropout is used. This sampled value acts as a multiplicative mask for the parameter. In other
words, when the sampled value is 1, the parameter keeps its value, otherwise the parameter is
dropped for the training iteration (assigned a value of 0). The motivation behind this technique is
to stochastically create subnetworks within the larger network, such that the network must learn
redundancy which combats overfitting. For Bayesian uncertainty analysis, when we use dropout,
we can consider each parameter to be sampled from a scaled Bernoulli distribution. Kendall et al.

(2017) show how by using this formulation, we can develop a Monte Carlo method using dropout

for sampling from the desired distribution P (e |x,X,Y). The final calculation is given as follows

ip(ymn,x,x,Y) (2.10)

1
P(y|x,X,Y)zW
n=1

Where @, are the parameters of the network sampled in the nth Monte Carlo dropout sample. We

will refer to this sampling technique as MC dropout. We can use this approximation of the
predictive distribution to better estimate the network uncertainty. To rank samples by their
uncertainty we use a scoring metric called an acquisition function. The Bayesian Active Learning
by Disagreement (BALD) acquisition function proposed by Houlsby et al. (2011) is defined as

follows

U (X)=H[P(YI%X,Y)]~Egy | H[P(¥Ix0)]] (2.12)
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Computationally, this can be approximated using the MC dropout samples as

N

U(x)zH{%gP(ﬂx,mn)}—%ZH[P(y|x,con)] (2.12)

n=1
where N is the number of MC samples, and ®, are the parameters of the network sampled for the

nth MC dropout sample. Data points with high entropy for the average predictive distribution of
the MC dropout samples, but low average entropy for the entropy of each of the sampled predictive
distribution will have a high BALD score indicating that the network is uncertainty about the
prediction. The intuition behind this metric is that if the dropout sampling of the weights causes
the network to change its prediction, then the network is considered uncertain about the sample

prediction.

2.3 Summary

The purpose of this chapter was to present a background summary regarding prior related work
and machine learning techniques relevant for this thesis. A thorough description of image
classification, generative networks, and uncertainty analysis was provided. Traditional GAN
augmentation methods do not take the classification uncertainty into account when sampling the
synthetic images, limiting the resulting classification performance (Wang et al. 2017). The key
innovation in this thesis was to combat this limitation through the development of an image
classification system that is capable of augmenting the training set using samples selected from a
GAN based on analysis of the classification network uncertainty. The following chapter will

describe the overall design for this system.
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Chapter Three: System Design

The purpose of this chapter is to present the overall system design for the classification framework
developed in this thesis. Section 3.1 presents a high-level overview of the system design. Section
3.2 describes the operations performed for dataset preprocessing. Section 3.3 defines the
architecture of each GAN, the training procedure, and the metrics used for performance evaluation.
Section 3.4 presents the classifier architecture and describes the processing for each iteration of

the training feedback loop. Section 3.5 summarizes the details presented in this chapter.

3.1 System Overview

The overall structure for the classification framework developed in this thesis is shown in Figure
3-1 and will be described in the subsequent sections. The high-level operation of each component
is as follows:

e Dataset: For the purposes of this thesis, all raw data points are acquired from the MNIST,
LSUN, and ISIC 2018 datasets. Each raw data point is an image with a corresponding class
label. To improve the stability of the algorithms, preprocessing is applied to each of the
images before training (Tabik et al. 2017). Further preprocessing details are provided in
Section 3.2.

e GAN: The GAN is trained on the raw data in the dataset and consists of two networks, the
generator and the discriminator. The generator network is used to synthesize image samples
for data augmentation. The discriminator network is used by the importance sampling

mechanism to determine which samples from the GAN have a high probability of being
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realistic. The architecture design for each GAN and a description of the training procedure
and metrics used for performance evaluation is provided in Section 3.3.

Importance Sampling: The importance sampling mechanism developed in this thesis
determines which data samples are to be acquired for the next iteration of the training loop.
The samples could come from the GAN or from the raw dataset. Details of the importance
sampling mechanism are given in Section 3.4.2.

Training Loop: During each iteration of the training loop, samples selected by the
importance sampling mechanism are used to train the image classifier. After the training
iteration has completed, the trained classifier is then used by the importance sampling
mechanism to pick the best samples for the next iteration. This process continues until the
final dataset size is reached, upon which the resulting network is outputted as the Final
Classification Network. Further details regarding the training loop operation are provided

in Section 3.4.2.

Training Loop

Final Classifier

Importance

Dataset Sampling Network

Figure 3-1 Overall design for the classification framework developed in this thesis.
The direction of each line indicates the flow of data.
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3.2 Dataset Preprocessing

A description of how each dataset was preprocessed is given below:

MNIST: Each image in the original MNIST dataset has a resolution of 28x28 pixels. The
preprocessed MNIST dataset for this thesis was formed by resizing the images to a
resolution of 32x32 pixels using cubic interpolation. The motivation for resizing each
image to 32x32 pixels was to enforce that the width and height of the images are powers
of 2 which is required for training a PGGAN. The images were then normalized such that
each pixel had a value range between -1 and 1. The resulting dataset consisted of 60,000
training images with ~6,000 images per category and 10,000 test images with ~1,000 per
category. Example images from the MNIST dataset after preprocessing are shown in Figure
3-2.

LSUN: Each image in the original LSUN dataset has a resolution where the image short
edge had 256 pixels (Yu et al. 2015). The preprocessed LSUN dataset for this thesis was
formed by first randomly sampling 10,000 images from each category to form the training
set. Then each image was cropped such that the resulting resolution was 256x256 pixels.
The motivation for resizing each image to 256x256 pixels was to enforce that the width
and height of the images are powers of 2 which is required for training a PGGAN. For
GAN training the images were normalized such that each pixel had a value range between
-1 and 1. For classifier training the preprocessing method proposed by Howard et al. (2017)
was used. The resulting dataset consisted of 100,000 images, with 10,000 images from
each category and 3,000 test images, comprising 300 images from each category. Example

images from the LSUN dataset after preprocessing are shown in Figure 3-3.
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ISIC 2018: Each of the images in the original ISIC 2018 dataset has a resolution of
600x450 pixels. The preprocessed ISIC 2018 dataset developed for this thesis was formed
by first randomly sampling 500 images from the 10,015 training images to form the test
set. All images were scaled to a resolution of 256x256 pixels using cubic interpolation. The
motivation for resizing each image to 256x256 pixels was to enforce that the width and
height of the images are powers of 2 which is required for training a PGGAN. As the
images were not cropped before scaling, the aspect ratio of the images was not preserved.
The motivation behind this preprocessing decision was that the skin lesions in the images
were not centered, therefore cropping the image might have removed important details
relating to the classification of the lesion. For GAN training the images were normalized
such that each pixel had a value range between -1 and 1. For classifier training the
preprocessing method proposed by Howard et al. (2017) was used. The resulting dataset
consisted of 9,515 training images and 500 test images. The label distribution for the ISIC
2018 dataset is highly nonuniform as shown in Figure 3-5. Example images from the ISIC

2018 dataset after preprocessing are shown in Figure 3-4.



Figure 3-2 Example images from the preprocessed MNIST dataset.

Figure 3-3 Example images from the preprocessed LSUN dataset.
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Figure 3-4 Example images from the preprocessed ISIC 2018 dataset.
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Figure 3-5 Distribution of class labels for the 1SIC 2018 dataset.
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3.3 GAN Training
3.3.1 GAN Architectures

There are three GAN architectures used for this thesis: Small-DCGAN, Large-DCGAN, and
PGGAN. The Small-DCGAN and Large-DCGAN architectures are adaptations of the original
DCGAN model (Radford et al. 2015) with small and large capacities respectively. Due to the lower
capacity relative to the PGGAN, the Small-DCGAN and Large-DCGAN were only trained using
the MNIST dataset. Let us describe the terminology used in the following tables:

e Layer Number: As the architectures for the networks developed in this thesis are
feedforward, all layers are processed sequentially and the number referencing the given
layer describes the processing order.

e Operation: There are different layer types used for the construction of the network
architectures. Linear refers to a densely connected layer. Convolution refers to a
convolutional layer. Upsample + Convolution consists of an upsampling operation
followed by a convolutional layer. The upsampling operation uses interpolation to scale
the width and height of the image by 2. The Max Pool layer performs downsampling on
the activation outputs by only outputting the maximum value activation for a small
neighborhood of surrounding pixels.

e Kernel: The width and height of the convolution kernel.

e Strides: For convolution layers, Strides refers to the step size taken by the convolution
operation. For max pool layers, Strides refers to the neighborhood size which is pooled.

e Feature Maps: For densely connected layers, Feature Maps describes the number of
neurons in the layer. For convolutional layers, Feature Maps describes the number of

kernels in the layer.
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e Dropout: The probability of dropping each output activation in the layer.
e Use Batch Normalization: Whether batch normalization was used after the layer
activation.

e Activation Function: The type of activation function used by the layer.

The network architecture for the Small-DCGAN generator and discriminator are seen in Table 3-
1 and Table 3-2 respectively. The total number of trainable parameters for the Small-DCGAN is
369,762 where the generator and discriminator each respectively contain 270,113 and 99,649
trainable parameters. The training parameters used for the Small-DCGAN are shown in Table 3-

3.

Table 3-1 Generator layer architecture for Small-DCGAN

(100-dimensional latent space with 270,113 total trainable parameters)
Layer Operation | Kernel | Strides | Feature | Dropout Use Batch Activation

Number Maps Normalization | Function
L1 Linear N/A N/A 1568 0.0 Yes RelLU
L2 Upsample + 3x3 1x1 128 0.0 Yes RelLU
Convolution
L3 Upsample + 3x3 Ix1 64 0.0 Yes RelLU
Convolution

L4 Convolution 3x3 1x1 1 0.0 No Tanh
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Table 3-2 Discriminator architecture for Small-DCGAN (99,649 total trainable parameters)

Layer Operation | Kernel | Strides | Feature | Dropout Use Batch Activation
Number Maps Normalization Function
L1 Convolution 3x3 2x2 16 0.25 No Leaky RelLU
L2 Convolution 3x3 2x2 32 0.25 Yes Leaky RelLU
L3 Convolution 3x3 2x2 64 0.25 Yes Leaky RelLU
L4 Convolution 3x3 Ix1 128 0.25 No Leaky ReLU
L5 Linear from N/A N/A 1 0.0 No Sigmoid
L4

Table 3-3 Training hyperparameters for Small-DCGAN and Large-DCGAN

Training Parameter Value
Generator Optimizer Adam
Discriminator Optimizer Adam
Batch Size 32
Iterations 50000
Leaky RelL U Slope Alpha=0.2
Weight, Bias Initialization Xavier Uniform Initializer

The network architecture for the Large-DCGAN generator and discriminator are seen in Table 3-
4 and Table 3-5 respectively. The structure of the Large-DCGAN has more layers than the Small-
DCGAN and the total number of trainable parameters for the Large -DCGAN is 1,627,682 where
the generator and discriminator each respectively contain 1,040,705 and 586,977 trainable
parameters. The training parameters used for the Large-DCGAN are identical to those used for the

Small-DCGAN and are shown in Table 3-3.
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Table 3-4 Generator layer architecture for Large-DCGAN
(100-dimensional latent space with 1,040,705 total trainable parameters)
Layer Operation | Kernel | Strides | Feature | Dropout Use Batch Activation

Number Maps Normalization | Function

L1 Linear N/A N/A 6272 0.0 Yes RelLU

L2 Convolution 3x3 1x1 128 0.0 Yes RelLU

L3 Upsample + 3x3 Ix1 128 0.0 Yes RelLU
Convolution

L4 Convolution 3x3 1x1 64 0.0 Yes ReLU

L5 Upsample + 3x3 1x1 64 0.0 Yes RelLU
Convolution

L6 Convolution 3x3 1x1 1 0.0 No Tanh

Table 3-5 Discriminator architecture for Large-DCGAN (586,977 total trainable parameters)

Layer Operation | Kernel | Strides = Feature | Dropout Use Batch Activation
Number Maps Normalization Function
L1 Convolution 3x3 Ix1 32 0.25 No Leaky ReLU
L2 Convolution 3x3 2x2 32 0.25 No Leaky RelLU
L3 Convolution 3x3 Ix1 64 0.25 Yes Leaky RelLU
L4 Convolution 3x3 2x2 64 0.25 Yes Leaky ReLU
LS Convolution 3x3 Ix1 128 0.25 Yes Leaky ReLU
L6 Convolution 3x3 2x2 128 0.25 Yes Leaky ReLU
L7 Convolution 3x3 Ix1 256 0.25 Yes Leaky RelLU
L8 Linear N/A N/A 1 0.0 No Sigmoid

The PGGAN model used for this thesis was based off the implementation provided by Karras et
al. (2017). The PGGAN architecture is significantly larger than the Small-DCGAN and Large-
DCGAN with over 20 million parameters used in each of the generator and discriminator networks.

One key advantage of the PGGAN architecture is the ability to progressively scale the model to
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train on images of various sizes. The ISIC 2018 and LSUN dataset images were each 256x256
pixels and the MNIST dataset images were 32x32 pixels, yet the PGGAN could train on both

resolutions due to the progressively growing nature of the model.

3.3.2 Training and Performance Evaluation
During training, multiple iterations of gradient descent were taken to decrease the loss function of
the generator and discriminator. The details for each of the trained GAN networks are shown in
Table 3-6. Label conditioning refers to the GAN being trained to model the conditional distribution
of the data for a given label. This is beneficial as it allows the entire dataset to be represented using
a single GAN. However, it was experimentally determined that the Small-DCGAN and Large-
DCGAN suffered from mode collapse when modelling the conditional distribution. Mode collapse
isa common issue when training GANs where the generator network collapses onto a single mode
of the data distribution (Che et al. 2016). To compensate for this problem, an ensemble of GANs

was used, each trained to generate images representing a specific label from the dataset.

The GANSs used to generate the LSUN samples were pretrained by Karras et al. (2017). All other
models were trained on a local machine that contained two Nvidia 1080 Ti GPUs. The time
required to train the GANs varied with the capacity of the architectures. The simplest model
(MNIST Small-DCGAN) took 30 minutes to train, while the most complex model (ISIC 2018

PGGAN) took 10 days to train.
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Table 3-6 Overview of trained GAN architectures

Dataset Type GAN Architecture Use Label Training Training Time
Conditioning Location
MNIST Small-DCGAN No Local Machine 30 Minutes
MNIST Large-DCGAN No Local Machine 1 Hour
MNIST PGGAN Yes Local Machine 1 Day
LSUN PGGAN No Pretrained (Karras N/A
et al. 2017)
ISIC 2018 PGGAN Yes Local Machine ~10 Days

To evaluate the performance of the trained GANs, the IS and FID scores were computed for each
GAN. The IS is computed using samples from the GAN, while the FID is computed using samples
from both the GAN and the dataset. 5000 images were sampled from each class label for the metric

computation.

3.4 Classification Training Loop:

3.4.1 Classifier Architecture
The classifier architecture used for the MNIST dataset is described in Table 3-7. The developed
CNN has 5 layers and has 1,199,882 trainable parameters. The specifications of the training

environment are described in Table 3-8.
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Table 3-7 Classifier Architecture for MNIST (1,199,882 total trainable parameters)
Layer Operation | Kernel | Strides | Feature | Dropout Use Batch Activation

Number Maps Normalization | Function
L1 Convolution 3x3 1x1 32 0.0 No ReLU
L2 Convolution 3x3 1x1 64 0.0 No RelLU
L3 Max Pool N/A 2x2 N/A 0.25 No None
L4 Linear from N/A N/A 128 0.5 No RelLU
L3
L5 Linear from N/A N/A 10 0.0 No Softmax
L4

Table 3-8 Training hyperparameters for MNIST Classifier

Training Parameter Value
Optimizer Adadelta
Batch Size 32
Epochs 100
Weight, Bias Initialization Xavier Uniform Initializer
Loss Function Cross-Entropy

As the images in the LSUN and ISIC 2018 datasets are much higher resolution than the MNIST
data, a classification network with greater capacity must be used. Training high resolution
classification models from scratch typically requires a large amount of data. To mitigate this
problem, we used a classification network that has been pretrained on the ImageNet dataset. The
pretrained network used for the transfer learning is based on the MobileNet architecture developed
by Howard et al. (2017). The top layers of the network were stripped off and replaced by a 128-

dimension dense layer with dropout of 0.5. A final dense layer was placed on the network with the
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dimensions equal to the number of classes in the dataset (7 for ISIC 2018 and 10 for LSUN).
Furthermore, a weighted loss function was used to compensate for the imbalance in the ISIC 2018

dataset. The hyperparameters used for training the classification network are shown in Table 3-9.

Table 3-9 Training hyperparameters for LSUN and ISIC 2018 Classifier

Training Parameter Value
Optimizer SGD
Batch Size 32
Epochs 30
Weight, Bias Initialization Xavier Uniform Initializer
Loss Function Cross-Entropy

3.4.2 Training Feedback Loop
The algorithm for the processing performed during each iteration of the training loop is shown in
Figure 3-6. We start iteration step N in possession of the current trained classifier network and the
current training set. To perform an iteration of the training loop, samples from the data source are
used to compute the classifier network posterior estimates through MC dropout. Next, an
acquisition function is used to process the posterior estimates and assign each image sample a
score. The samples with the highest scores are added to the training set for iteration step N +1 and
used to train the resulting classifier for iteration step N +1. This process repeats until desired
convergence is met or the predefined number of iterations are completed. For the base case when
N =0, the classifier network is initialized with random parameter values. The data sources used

for this thesis consist of images from the raw dataset, and images sampled from the Small-
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DCGAN, Large-DCGAN, and PGGAN. When a GAN data source is used, the discriminator output
is computed to filter the data such that only generated images with a discriminator output greater
than one standard deviation above the mean output value will be considered for acquisition
function scoring. This thresholding has the effect of filtering out images that the discriminator
believes are not representative of the dataset. The acquisition functions used for this thesis are
random sampling, BALD, and max entropy. Random sampling simply involves selecting random
images from the data source to become part of the training set for the next iteration. BALD

acquisition involves computing the following score for each of the assets in the data

source
Syup (X)=H [ﬁzp(yu,mn)}%zH [P(yIx.o,)] (3.1)

After the scores are computed, they are sorted and the images with the highest scores are sampled
and added to the training set for the next iteration. Max entropy acquisition involves computing

the following score for each of the assets in the data source

SMaxEntropy (X):%gH [P(y|x,con )} (32)

Similar to BALD acquisition, after the scores are computed, they are sorted and the images with

the highest scores are sampled and added to the training set for the next iteration.
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Figure 3-6 Overview of the classification training loop.

3.5 Summary
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The purpose of this chapter was to describe the overall system structure for the classification

training loop. A detailed description was provided regarding the preprocessing operations applied

for each of the datasets. The neural network architecture and training hyperparameters were

presented for each of the GAN and classifier models. Finally, the algorithmic processing

operations performed at each iteration of the training loop were presented.
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Chapter Four: Experimental Results

4.1 Introduction

The purpose of this chapter is to present the experimental results for the developed classification
system. In Section 4.2, the outcome of the GAN training will be discussed. The output of the GAN
loss functions will be analyzed, and a set of sample images generated by each GAN will be visually
inspected for a qualitative assessment of image quality. Furthermore, the statistics of the output
range for each discriminator will be presented, and the IS and FID metrics will be used to
guantitatively measure the diversity and quality of images synthesized by each GAN. Section 4.3
will present a qualitative interpretation of the classifier network uncertainty by comparing the
difference between images with low and high BALD scores. Section 4.4 will describe the
experiments that were conducted for the classification framework using the MNIST, LSUN, and
ISIC 2018 datasets. Section 4.5 addresses each of the research questions proposed in Section 1.2
through analysis of the experimental results. Finally, Section 4.6 will present a summary of the

findings in this chapter.

4.2 GAN Training

4.2.1 Loss Function Analysis
During the training of the GAN architectures, the classification accuracy of the discriminator and
the loss functions for the discriminator and generator networks were recorded. Figure 4-1 shows
the discriminator training accuracy for the Small-DCGAN and Large-DCGAN models while being
trained on the MNIST dataset. A key point to illustrate is that a larger prediction accuracy does

not imply better GAN samples, it simply describes the relative strength of the discriminator to the
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generator. Notice how the prediction accuracy seems to stabilize for the Small-DCGAN around
0.70. This is due to the balanced competition between the capacities of the generator and
discriminator networks. If the discriminator network was much stronger than the generator, the
prediction accuracy would be closer to 1, and the generator would be unable to compete with the
discriminator, preventing the GAN from converging. Therefore, by observing the stability of the
prediction accuracy, we are made aware that the capacity of the generator and discriminator
networks are well matched. On the other hand, we notice that the prediction accuracy for the Large-
DCGAN seems to be decreasing gradually over time. To explain this result, we must examine the

loss functions for the generator and discriminator networks.

Discriminator Training Accuracy for DCGAN on MNIST
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Figure 4-1 DCGAN discriminator training accuracy on the MNIST dataset.
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Figure 4-2 shows the generator and discriminator loss functions for both the Small-DCGAN and
Large-DCGAN models while being trained on the MNIST dataset. Examining the loss for the
Large-DCGAN we see that the loss for both the discriminator and generator is increasing at the
end of the training iterations. This result can be explained by looking back at the GAN optimization

problem
minmaxV (D,G)=E, ., [109D(X) |+ B,_, [ log(1-D(G(2))) ] (41)

If the generator and discriminator loss are simultaneously increasing then it follows that

discriminator is getting better at discriminating images produced by the generator such that

Ebpz(z)[log(l—D(G(z)))] is increasing, but worse at discriminator real images such that

Ex~pm(x) [Iog D (x)] is decreasing. This explains why the classification accuracy in Figure 4-1 was

decreasing over time.

Training Loss for DCGAN on MNIST

—— Small-DCGAN Generator Loss
—— Small-DCGAN Discriminator Loss
1.6 —— Large-DCGAN Generator Loss
—— Large-DCGAN Discriminator Loss

0 2000 4000 6000 8000 10000
Training Iterations
Figure 4-2 DCGAN training loss for discriminator and generator on the MNIST dataset.
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4.2.2 Qualitative Visual Assessment of Samples
To qualitatively assess the generator quality of the trained GANs, images from each GAN

architecture were sampled and visually inspected.

4.2.2.1 GAN Image Quality During Training
Figure 4-3 shows samples taken during the training of the MNIST PGGAN architecture. Each
column displays the generated images for a fixed latent vector over the course of the training
iterations. Notice how during the early iterations the images are quite pixelated, this is due to the

progressive growing nature of the PGGAN.

MNIST GAN Samples During Training
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Figure 4-3 PGGAN samples during training on the MNIST dataset.
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Figure 4-4 shows samples taken during the training of the ISIC 2018 PGGAN architecture. Each
column displays the generated image for a fixed latent vector over the course of the training
iterations. Notice how some columns exhibit a significant amount of variation between training
iterations. The relative variation seems to be correlated with class imbalance between the training
labels. Impressively, the GAN architecture is capable of learning to represent specialized details

such as hair in the images.

ISIC GAN Samples During Training
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Figure 4-4 PGGAN samples during training on the 1SIC 2018 dataset.
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4.2.2.2 Final GAN Image Quality
Figure 4-5 shows samples generated from the trained PGGAN for each category of the LSUN
dataset. The GAN generates near photorealistic images of environments composed of static objects
such as chairs and beds. Specifically, the images from the dining room category exhibit a high
degree of photorealism. Examining the images from the classroom category, we see that the faces
generated by the GAN are distorted. This is due in part to the high variance in facial structure that
is difficult for the GAN to capture, but there is also a psychological explanation of this observation.
The visual cortex of a human observer has been evolutionarily trained to recognize human faces,
making it is easier for the observer to detect facial distortion in GAN generated images than the
distortion of inanimate objects such as couches (Tsao et al. 2008). Therefore, although the
distortion of the human faces in the classroom category is perceived to be worse than the distortion

of the desks, this perception is heavily biased by evolutionary preconditioning.
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LSUN Data Generated using PGGAN
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Figure 4-5 PGGAN samples from LSUN dataset categories.

Figure 4-6 shows samples generated from the trained PGGAN for each category of the ISIC 2018
dataset. Examining the generated images, we see that the GAN was capable of modelling specific
details of the skin such as wrinkles and hair. We also notice that the GAN models the artifacts of
the original image capturing device such as the black border around the perimeter of some of the
generated images. To quantitatively describe the realism of these images it would be necessary to

have them examined by a trained radiologist. However, by comparing the high-level characteristics
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of the generated images to the samples from raw data set (shown in Figure 3-4) we can infer by

visual inspection that the images are highly similar.

ISIC Data Generated using PGGAN
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Figure 4-6 PGGAN samples from ISIC 2018 dataset categories.

Figure 4-7 shows samples generated from the GAN architectures trained on the MNIST dataset.
By examining the images, it is clear that the sample quality increases as we move from the Small-
DCGAN to the Large-DCGAN and finally to the PGGAN. This is understandable since the
capacity of the Small-DCGAN is significantly smaller than that of the PGGAN. Notice how the

GAN:Ss are able to generate digits with the same label, for example ‘2°, but with unique styles.
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MNIST Data Generated using Small-DCGAN

Figure 4-7 Samples from the GAN architectures trained on the MNIST dataset.

4.2.3 Modeling the Discriminator Output
To perform the importance sampling it was necessary to evaluate the statistical properties of the
discriminator output for each GAN architecture to determine the cutoff thresholds. 3200 random
samples were generated for each category modelled by the GAN architecture. These samples were
fed into the discriminator and used to compute the output response. Note that for the Small-

DCGAN and Large-DCGAN architectures the output response is the raw probability, while for the
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PGGAN the output response is a score value. The larger the value of the discriminator output, the
more confidence it has that the sample is a good representative of the raw dataset. The mean and
variance of the discriminator outputs was calculated and the average values across the image
categories are presented in Table 4-1. We observe that for the Small-DCGAN and Large-DCGAN,
that the average output values are less than 0.5, and with very small variance. This indicates that
for a random GAN sample, the discriminator is consistently more likely to believe that the samples
are fake. Considering the relative scores of the PGGANS, we see that the ISIC 2018 GAN has the
greatest uncertainty regarding the discriminator output. This can be explained by recognizing that
the ISIC 2018 dataset is highly unbalanced, and some categories had less than 200 images.

Therefore, the resulting variance in the discriminator output is larger.

Table 4-1 Statistical description of discriminator output

Model Dataset Average Average
Architecture Discriminator Output Discriminator Variance
Small-DCGAN MNIST 0.47 2.64e-05
Large-DCGAN MNIST 0.46 4.47e-05
PGGAN MNIST 1.26 1.60
PGGAN LSUN -14.42 190.10
PGGAN ISIC 2018 -59.69 357.14
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4.2.4 Assessing the GAN Sample Quality

To evaluate the quality and diversity of the samples produced by the GANs, the IS and the FID
were calculated for each of the GANs. Additionally, the IS score for the raw dataset images was
calculated to provide a baseline. For the MNIST and LSUN datasets, 1000 images were sampled
from each image category to evaluate the metrics. As the 1SIC 2018 dataset is highly imbalanced,
an equal number of GAN and raw samples were drawn from the different categories. The result is
shown in Table 4-2. Examining the results in this table, we see that the 1S for the MNIST dataset
provided very little information, in fact the metric stated that the score for the GAN generated data
was actually better than the score for the raw data. This demonstrates a limitation of the IS. We
are only able to get relevant inception scores for images which resemble the data from the
ImageNet dataset that the Inception network was trained using. Therefore, as the MNIST dataset,
and to some extent, the ISIC 2018 dataset are far removed from the content in the ImageNet
dataset, the validity of the metric diminishes. However, for the LSUN dataset, the resulting 1S
values are close to results stated in prior literature (Karras et al. 2017). Notice how the FID score
for the MNIST dataset decreases as we progress from the Small-DCGAN model to the PGGAN.
This can be explained as the number of parameters of the Small-DCGAN is less than that of the
Large-DCGAN which in turn is less than the PGGAN. Therefore, we see that as the capacity of

the GAN increases, the FID score decreases as would be expected.



Table 4-2 1S and FID calculated for different GAN architectures.
Note that larger Inception score values indicate better generated results

and smaller FID scores indicate better generated results.

65

Model Dataset Inception Inception Score FID Score
Architecture Score (GAN)
(Raw Data)
Small-DCGAN MNIST 2.07 2.10 135.06
Large-DCGAN MNIST 2.07 2.27 92.27
PGGAN MNIST 2.07 2.10 14.09
PGGAN LSUN 9.60 8.17 10.28
PGGAN ISIC 2018 3.51 3.12 78.83

4.3 Interpreting Network Uncertainty

To qualitatively understand how uncertainty manifests itself in the network, the following

experiment was performed. A classifier was trained on the MNIST dataset. Then the BALD

acquisition function was evaluated for all the real training images as well as 10,000 images

sampled from the PGGAN. The real images with high and low BALD scores are shown in Figure

4-8. Likewise, the PGGAN generated images with high and low BALD scores are shown in Figure

4-9. A high BALD score represents that the network is uncertain about the label of the sample.

Notice how many of the high BALD score samples are visually challenging to interpret and there

are some which are ambiguous. Likewise, the images with low BALD scores are very discernable.

Therefore, we can qualitatively infer that the network uncertainty described by the BALD score

relates to our human interpretation of visual uncertainty.
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Real MNIST Images With High BALD Score

Figure 4-8 Raw MNIST images with high BALD scores (top) and low BALD scores (bottom).



PGGAN Generated MNIST Samples With High BALD Score

Figure 4-9 PGGAN generated MNIST images with high BALD scores (top)
and low BALD scores (bottom).
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4.4 Classification Experiments
The fundamental goal of the classification experiments was to address the core research questions
stated in Section 1.2. As the time required to train a classifier for the LSUN and ISIC 2018 datasets
was roughly two orders of magnitude larger than the time required to train a classifier for MNIST,
the majority of experiments were performed using the MNIST dataset. To maximize the
cohesiveness in the presentation of the experimental results, all analysis and discussion of the

results will be reported in Section 4.5.

4.4.1 Experiments with MNIST
The purpose of the MNIST dataset experiments was to determine the relative performance when
training a classifier using different data sources and acquisition functions. The Small-DCGAN,
Large-DCGAN, and PGGAN training datasets each had 10,000 images where 1,000 images were
sampled from each of the 10 categories. The raw MNIST training dataset consisted of 60,000
images with roughly 6,000 in each category. To measure classification performance, a test set was
built using 1,000 raw images with 100 from each category. The experiments on the MNIST dataset
were performed in the following way:
e At the start of each iteration, the classification network was initialized with a set of new
random weights. During each iteration the chosen acquisition function was used to sample
10 images from the given data source. These new images were added to the training dataset.
The classification network was then trained using this dataset for 100 epochs. The resulting
final balanced accuracy was then computed and stored for each iteration. This process

continued for 50 iterations. At this point the training set size had reached 500 images.
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The first set of experiments examined the performance when each data source was used
independently i.e. (the classifier was only trained on data from one of the four possible data
sources: raw MNIST dataset, Small-DCGAN, Large-DCGAN, and PGGAN).
The second set of experiments examined the performance when the GAN data sources were
used to augment the raw dataset i.e. (the classifier was trained on a dataset consisting of
the raw MNIST dataset combined with data from one of the three possible GAN data
sources: Small-DCGAN, Large-DCGAN, and PGGAN).
For all experiments, classification performance was measured using each combination of
data source and acquisition function. Additionally, each experiment was repeated 4 times

to establish a confidence interval for the accuracy estimate.

4.4.2 Experiments with LSUN and ISIC 2018

The goal of the experiments performed using the LSUN and ISIC 2018 datasets was to compare

the classification performance when training using raw data and data generated from the PGGAN.

The classifiers were trained under random sampling or BALD acquisition. The experimental

procedure can be described as follows:

Each experiment used either random sampling or BALD acquisition as the chosen
acquisition function.

During each experiment, 100 images were randomly selected from the raw dataset to form
the initial training set. Every 5 epochs as the classification network was trained, 10 new
images for each category were selected either using the chosen acquisition function and

added to the training set.
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e Each experiment was repeated 10 times to establish a confidence interval for the accuracy

estimate.

4.5 Assessment of Research Questions using Experimental Observations
This section addresses each of the research questions proposed in Section 1.2 through analysis of

the experimental results.

4.5.1 What Is the Difference in Classifier Performance If We Train Using Purely

GAN Synthesized Data vs. Raw Data?
Examining the results for the first set of MNIST experiments shown in Figure 4-10 we observe
that under random acquisition the performance of the raw data source is optimal, however under
BALD or max entropy acquisition, the PGGAN data source is optimal. The fact that a classifier
trained on purely synthetic data can outperform a classifier trained on raw data is quite fascinating.
This implies that the images sampled from the GAN are more informative for training the classifier
than the images from the raw dataset. A possible explanation for this observation is that while the
distribution of samples from the GAN has less diversity than the raw dataset, the GAN is capable
of generating samples which are highly informative for classification. Therefore, under an
appropriate acquisition function these informative samples can be selected by the importance
sampling mechanism and added to the training set, resulting in increased classification

performance.
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Classification Accuracy on MNIST Using Random Acquisition
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Figure 4-10 MNIST classification performance under various acquisition functions. The plots on
the left show the balanced accuracy for all 50 iterations, while the plots on the right show the
balanced accuracy for the final 20 iterations. The shaded area around each line signifies a
confidence interval of one standard deviation.
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For the I1SIC 2018 dataset we notice a significant difference in classification performance between
the purely GAN synthesized data and the raw data as indicated in Figure 4-11 with the classifiers
trained on raw data achieving a 10 percentage point improvement in balanced accuracy over the
classifiers trained on purely synthetic data. With this said, the classifiers trained on purely synthetic
GAN data still performed reasonably well given the complexity of the classification task, resulting

in balanced accuracy across the 7 classes of 0.52 and a ROC AUC score of 0.7.

The results provided by the LSUN experiments in Figure 4-12 were rather intriguing as the
performance of the classifiers trained on purely synthetic data was nearly identical to the
performance of the classifiers trained using raw data. This implies that the images sampled from

the GAN are equally informative for training the classifier as the images from the raw dataset.

In summary, the experimental results have demonstrated that training a classification network
using synthetic data from a GAN is not only feasible, but under an appropriate acquisition function
can surpass the performance of a classifier trained using raw data. It was observed that the final
classification performance is dependent on the quality of the GAN used to synthesize the training

images.
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Balanced Accuracy of Classifier Trained on ISIC 2018
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Figure 4-11 ISIC 2018 classification performance. The plot on the top shows the balanced
accuracy and the plot on the bottom shows the ROC AUC score. The shaded area around each
line signifies a confidence interval of one standard deviation.
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Balanced Accuracy of Classifier Trained on LSUN
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Figure 4-12 LSUN classification performance. The plot on the top shows the balanced accuracy
and the plot on the bottom shows the ROC AUC score. The shaded area around each line
signifies a confidence interval of one standard deviation.
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4.5.2 What Is the Difference in Classifier Performance If We Train Using Random
Chosen Samples vs. Samples Chosen Based off Classifier Prediction Uncertainty?
The results of the MNIST experiments displayed in Figure 4-13 show that classifiers trained under
BALD acquisition performed consistently better than classifiers trained under random sampling
or max entropy acquisition. Intuitively it is understandable that BALD acquisition should perform
better than random sampling, however the consistent performance gain over max entropy
acquisition is intriguing. To develop an explanation for this behavior, let us consider the definition

of the BALD acquisition function shown below

U(x)zH[% iP(y|x,mn)}—%iH|:P(y|x,con)] (4.2)

n n=1
The key difference between this expression and max entropy acquisition is the term

N
H [%Z P(yl x,wn)] This term will be large if the network prediction fluctuates between the
=1

MC samples. A possible explanation for why BALD acquisition outperforms max entropy
acquisition is due to the properties of the softmax activation function used in the classification

network. As described by (Guo et. al 2017), the softmax activation has been shown to overestimate

N
the network prediction certainty, causing the term %ZH [P(y|x,con)] to be smaller than we
n=1
would expect. Hence, by measuring how much the network predictions change between MC
1 N
samples given by H {WZ P(y | X,mn)} we get a better estimate of the uncertainty. The addition
n=1

of this extra term is what makes the BALD acquisition function a better estimator for network

uncertainty.
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The classification results for the ISIC 2018 and LSUN datasets are shown in Figures 4-11 and 4-
12 respectively. Notice how the classifiers trained under BALD acquisition are very similar in
performance to the classifiers trained under random acquisition. This implies that BALD
acquisition is not providing information gain during training. A possible explanation for this
observation is that given the complexity of the classification network, too few MC samples are

used to accurately estimate of the classifier uncertainty.

In summary, the results for the MNIST dataset have shown that the classifier performance
improved significantly under the BALD and max entropy acquisition. However, for the I1SIC 2018
and LSUN dataset, BALD acquisition had no significant effect. Further investigation will be
needed to evaluate the effective use of BALD acquisition for higher dimensional classification

tasks.
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Figure 4-13 MNIST classification performance using pure GAN data. The plots on the left show
the balanced accuracy for all 50 iterations, while the plots on the right show the balanced
accuracy for the final 20 iterations. The shaded area around each line signifies a confidence
interval of one standard deviation.
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4.5.3 How Is the Capacity of the GAN Used to Generate Training Images Correlated

with the Final Classification Performance?
To address this question, we can examine the results of the MNIST experiments in Figure 4-10.
We see that the ordering of the GANs in terms of final classification performance is PGGAN >
Large-DCGAN > Small-DCGAN. This is the same order as the capacity of the networks.
Therefore, we have experimental evidence to infer that the classification performance is positively
correlated with the capacity of the GAN. This makes intuitive sense since a higher capacity GAN
will be able to generate results which are higher quality, more representative of the dataset, and

hence better fit for training a classifier.

4.5.4 What Overall Performance Gain Can We Achieve from Using GAN

Augmentation?
To determine the impact of GAN data augmentation on classifier performance, let us examine the
results provided by the second set of MNIST experiments whose primary results are shown in
Figure 4-14. Figure 4-15 shows the resulting classifier performance under random acquisition
when data augmentation was performed. We see that augmentation using the PGGAN samples
achieved the best overall accuracy by a small margin and surpassed the accuracy of the classifier
trained on the raw dataset. We also notice that the Large-DCGAN augmented dataset performed
on par with the raw dataset, and that the Small-DCGAN augmented dataset performed worse. This
demonstrates that GAN augmentation has the potential to improve the classifier performance.
However, if the GAN does not have sufficient capacity, then the classifier performance can

decrease.
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MNIST Classification Accuracy using Small-DCGAN Augmented Data
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Figure 4-14 MNIST classification performance using augmented GAN data. The plots on the left
show the balanced accuracy for all 50 iterations, while the plots on the right show the balanced
accuracy for the final 20 iterations. The shaded area around each line signifies a confidence
interval of one standard deviation.
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MNIST Classification Accuracy
Using Augmentation by Random Acquisition
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Figure 4-15 MNIST classification performance for GAN data augmentation under random
acquisition. The plot on the left shows the balanced accuracy for all 50 iterations, while the plot
on the right shows the balanced accuracy for the final 20 iterations. The shaded area around each
line signifies a confidence interval of one standard deviation.

Examining the data from Figure 4-14 we see that BALD acquisition had the best performance for
all classifiers. In Figure 4-16 the results of training the classifiers under BALD acquisition are
shown together with the performance of the raw data classifier trained under random sampling
added as a baseline. The final test accuracy for each of the trained classifiers are shown in Table
4-3. We see that the performance of the classifiers trained using augmentation by BALD
acquisition outperformed the classifiers trained on the raw datasets. From the final test accuracies,
we see that the BALD PGGAN augmented dataset had an increase of 3.82 percentage points over

the Random Raw dataset, and an increase of 0.86 percentage points over the BALD Raw dataset.
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These results indicate that GAN data augmentation using the developed classification framework

can considerably improve the classification performance.

Classification Accuracy on MNIST for Best Augmentation Results
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Figure 4-16 Plot of the best performing classifiers trained using GAN augmented MNIST data.
The plot on the left shows the balanced accuracy for all 50 iterations, while the plot on the right
shows the balanced accuracy for the final 20 iterations. The shaded area around each line
signifies a confidence interval of one standard deviation.

Table 4-3 Final test accuracy for best performing classifiers on MNIST using GAN data
augmentation.

MNIST Classifier Final Test Accuracy
Training Type

Random Raw 0.9251
BALD Raw 0.9547
BALD Small-DCGAN 0.9630
BALD Large-DCGAN 0.9620

BALD PGGAN 0.9633
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Through the experimental results we have seen that training a classification network using a dataset
augmented with synthetic GAN samples can improve the overall performance of the classifier.
Additionally, the importance sampling mechanism was shown to the further improve the classifier

performance, especially for the GANs with lower capacity.

4.6 Summary

In this chapter the results were presented for the experimental work conducted in this thesis. By
means of visual inspection and computation of the IS and FID metrics, the quality and diversity of
the generated GAN images were assessed. Qualitatively it was observed that the GAN samples
closely resembled the raw images from the dataset. Furthermore, it was shown that the quality of
the GAN samples was dependent on the capacity of the GAN. Through grouping images by BALD
acquisition score, it was qualitatively demonstrated that the images with the largest prediction
uncertainty were visually harder to identify due to ambiguity in the shape, or lack of geometric
detail, while the images with the smallest prediction uncertainty were highly distinguishable and
unambiguous. Two sets of classification experiments were conducted using the MNIST dataset.
The first set examined the classification performance using training data sampled from a single
data source, while the second set examined the classification performance using augmented
training data consisting of samples from the original dataset and a GAN. Additional classification
experiments were performed using the LSUN and ISIC 2018 to assess the performance when
training on an augmented dataset. Thorough analysis of these results was provided and all of the

research questions from Section 1.2 were addressed.
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Chapter Five: Applications

The purpose of this chapter is to explore possible applications for the technology developed in this
thesis. Section 5.1 discusses the potential of using the GAN trained on the ISIC 2018 dataset as a
mechanism to investigate potential disease progressions. Section 5.2 describes how the developed
classification framework could be used for active learning. Section 5.3 presents the possibility of
using the importance sampling mechanism developed in this thesis to improve training efficiency

for reinforcement learning. Section 5.4 summarizes the presented material.

5.1 Disease Progression Analysis

Monitoring disease progression is a critical component of optimal medical treatment planning
(Manley 2007). A mechanism to generate images describing the potential progression of a disease
could be useful for physicians to evaluate intervention strategies. One application of the GAN
architecture is the ability to smoothly transition between two images by generating samples using
latent space interpolation. Specifically, for GANs trained on medical images, such as the PGGAN
trained for this thesis on the ISIC 2018 dataset, latent space interpolation can be used to generate
images describing a possible disease progression. As an example, consider a latent space vector
representing a melanoma skin lesion. By extrapolating along different latent dimensions, we can
transform the image to visualize the progressive change. Figure 5-1 demonstrates how the
melanoma latent vector can be transformed to generate images describing possible disease

trajectories.
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The progressions visualized in Figure 5-1 were randomly generated and have no specific medical
significance. However, by providing actual disease progression data or including additional labels
on the data describing features such as disease severity, we can train a classifier on the latent space
to identify how the different latent space axis correspond to different disease progression
trajectories. This would enable a physician to use the GAN latent space as an exploratory tool to

investigate realistic disease progressions.

Disease Progression

Figure 5-1 Using the PGGAN trained on the ISIC 2018 dataset to synthesize possible melanoma
disease progressions. The top row shows the starting image. A possible disease progression is
represented by each column. Note that the progressions in this figure were randomly generated
and have no specific medical significance.
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5.2 Active learning
Although augmentation strategies can be used to improve classification accuracy, there comes a
point when additional raw data is necessary. Labelling data can be very expensive for specialized
domains such as medical radiology. As such, it is critical that the labelling is prioritized for data
which can significantly improve classification performance. The process of prioritizing the data
for labelling and then using this newly labelled data to train a classifier is called active learning
(Settles 2011). The work performed in this thesis demonstrated how the BALD and max entropy
acquisition functions could assess which GAN images to sample for the biggest impact in
classification performance. The developed techniques could be adapted to form an active learning
framework where the acquisition functions were applied to unlabelled data. In fact, the BALD
acquisition function was originally developed for active learning purposes (Houlsby et al. 2011).
The benefit of this approach would be to minimize the amount of labelled data required to achieve

the desired classification performance.

5.3 Reinforcement Learning

Reinforcement learning (RL) is the domain of machine learning where an agent is trained to make
optimal decisions for a given environment (Gosavi 2009). RL is used heavily in robotics for tasks
such as driverless cars or automated surgery (Wang et al. 2018). A key challenge with RL is the
vast number of training samples typically needed for models to converge. This is due to the large
number of uninformative samples typically encountered during training. For example, the vast
majority of driving data consists of standard road conditions, however a driverless car must know
how to respond to the critical rare occurrence incidents such as car accidents. One possible way to

improve RL training is to use a GAN to generate training examples representing important
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environmental edge cases. The mechanism proposed in this thesis for importance sampling from
GANs has the potential to be applied for RL tasks to sample training examples which can improve

the training efficiency.

5.4 Summary

This chapter presented several possible applications of the technology developed in this thesis.
The ability to generate highly realistic synthetic medical images has great potential to assist
physicians with treatment planning through providing tools capable of visualizing and predicting
how various disease trajectories may progress. Additionally, the ability to model the uncertainty
in a classification network has beneficial ramifications for the training of active learning and

reinforcement learning systems.
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Chapter Six: Conclusions

6.1 Thesis Summary

The work presented in this thesis demonstrated that it is possible to train an image classification
network using purely synthetic images from a GAN and that the classifier performance is
correlated with the capacity of the GAN. Furthermore, it was shown that using an appropriate
acquisition function, the performance of the classification network could be improved. An
interesting result was that the performance of a MNIST classifier trained under BALD acquisition
using images synthesized from a PGGAN was superior to an equivalent classifier trained using
raw data. The performance gain from augmenting a raw dataset with GAN synthesized images
was shown to be measurable but dependent on the capacity of the GAN. In conclusion, the
experimental results of this thesis demonstrate that GAN augmentation using importance sampling
is advantageous for image classification. Overall, the developed technology has potential for
application in medical image classification as well as other applications in the domains of active

learning and RL.

6.2 Contributions
Through the process of addressing the research questions stated in Section 1.2, the following
contributions were made:

e It was demonstrated how a GAN could be trained to synthesize high resolution medical

images representing the ISIC 2018 dataset. The quality and diversity of the generated
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samples was advocated for by the observation that the generated synthetic images could
improve classification performance.

An iterative training loop algorithm was developed to incrementally build up the training
set from GAN generated images to maximize the final performance of the classifier.
Custom neural network architectures were designed for the Small-DCGAN and Large-
DCGAN, and the CNN classifiers.

An importance sampling mechanism was developed to prioritize samples based on the
impact they would have on classification performance. The mechanism was shown to
provide substantial performance improvement for the MNIST dataset.

The potential positive impact of using GAN synthesized data augmentation was validated
by means of the experimental results. By thorough analysis, all research questions posed
for this thesis were answered.

Published developed work in the CVPR 2019 Workshop on Uncertainty and Robustness

in Deep Visual Learning (Nielsen et al. 2019).

6.3 Future Work

Recent work has been directed towards the challenge of insuring that a neural network
complies with the definition of differential privacy (Abadi et al. 2016). A next step for the
work developed in this thesis would be to incorporate differential privacy training
mechanisms into the construction of the GAN and classifier networks. This would further
enforce the anonymity of the GAN synthesized data.

With the current GAN architecture, there is no direct way to infer the latent vector from a

given image. This functionality would be beneficial to generate additional training images
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by manipulating the latent vectors for specific images that the network is uncertain about.
One GAN architecture that addresses this issue is called the Bidirectional GAN (BIGAN)
(Donahue et al. 2016). The network modifies the discriminator by adding an encoder that
is trained to predict the latent vector for a given image. Once the network is trained, this
encoder network can be used to encode the image into its latent space representation. A
next step for the work in this thesis would be to utilize a BIGAN architecture such that
latent space manipulation could be used to improve the sample quality used for
augmentation.

In the experimental results it was shown that classifier performance is positively correlated
with the capacity of the GAN used to augment the dataset. Currently the FID and IS are
applied as metrics to assess the capacity of the GAN. In future work it would be valuable
to quantify the relationship between the FID and IS output and the performance of the
classifier trained using GAN augmented data, such that a metric could be developed to

predict the potential benefit an arbitrary GAN would provide for data augmentation.
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